开车旅行(算法竞赛进阶指南,倍增优化 DP)

2024-03-30 13:48

本文主要是介绍开车旅行(算法竞赛进阶指南,倍增优化 DP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.题目链接:

开车旅行

二.题目大意:

中文题有点长,就不误导大家了...

三.分析:

先预处理出一下量:

ga[i]:从城市 i 出发,小 A 下一步要到的城市.

gb[i]:从城市 i 出发,小 B 下一步要到的城市.

f[i][j][k]:从城市 j 出发,k 先走,走 2^i 步后到达的城市编号.

da[i][j][k]:从城市 j 出发,k 先走,走 2^i 步后,小 A 走过的距离.

db[i][j][k]:从城市 j 出发,k 先走,走 2^i 步后,小 B 走过的距离. 

求出上述结果后,我们就可以利用倍增以 O(log_2x) 的时间复杂度求出小 A 与 小 B 分别走的距离.

下面给出上述结果的求解方法.

ga[i]:从城市 i 出发,小 A 下一步要到的城市.

gb[i]:从城市 i 出发,小 B 下一步要到的城市.

倒序枚举城市 i,二分可以找出第一个高度大于等于城市 i 的城市,左右寻找即可.

void init_g()
{set < pair <ll, int> > st;st.emplace(make_pair(inf, 0));st.emplace(make_pair(inf + 1, 0));st.emplace(make_pair(-inf, 0));st.emplace(make_pair(-inf - 1, 0));for(int i = n; i >= 1; --i){auto j = st.lower_bound(make_pair(h[i], i));--j, --j;ll mn = inf, sm = inf;int mni, smi;for(int k = 0; k < 4; ++k){auto p = *j;ll d = (ll)abs(p.first - h[i]);if(d < mn){sm = mn, smi = mni;mn = d, mni = p.second;}else if(d < sm){sm = d, smi = p.second;}++j;}ga[i] = smi, gb[i] = mni;st.emplace(make_pair(h[i], i));}
}

 

f[i][j][k]:从城市 j 出发,k 先走,走 2^i 步后到达的城市编号.

i = 0:f[0][j][0] = ga[j], f[0][j][1] = gb[j];

i = 1:f[1][j][k] = f[0, f[0][j][0], 1 - k];

i > 1:f[i][j][k] = f[i - 1][f[i - 1][j][k]][k];

void init_f()
{for(int j = 1; j <= n; ++j){f[0][j][0] = ga[j];f[0][j][1] = gb[j];}for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){f[1][j][k] = f[0][f[0][j][k]][1 - k];}}for(int i = 2; i < N; ++i){for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){f[i][j][k] = f[i - 1][f[i - 1][j][k]][k];}}}
}

 

 da[i][j][k]:从城市 j 出发,k 先走,走 2^i 步后,小 A 走过的距离.

 db[i][j][k]:从城市 j 出发,k 先走,走 2^i 步后,小 B 走过的距离. 

首先定义函数 get_dist(i, j) = abs(h[i] - h[j]);

i = 0:da[0][j][0] = get_dist(j, ga[j]), da[0][j][1] = 0;

           db[0][j][0] = 0, db[0][j][1] = get_dist(j, gb[j]);

i = 1:da[1][j][k] = da[0][j][k] + da[0][f[0][j][k]][1 - k];

          db[1][j][k] = db[0][j][k] + db[0][f[0][j][k]][1 - k];

i > 1:da[i][j][k] = da[i - 1][j][k] + da[i - 1][f[i - 1][j][k]][k];

          db[i][j][k] = db[i - 1][j][k] + db[i - 1][f[i - 1][j][k]][k];

int get_dist(int i, int j)
{return (int)abs(h[i] - h[j]);
}void init_d()
{for(int j = 1; j <= n; ++j){da[0][j][0] = get_dist(j, ga[j]), da[0][j][1] = 0;db[0][j][1] = 0, db[0][j][1] = get_dist(j, gb[j]);}for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){da[1][j][k] = da[0][j][k] + da[0][f[0][j][k]][1 - k];db[1][j][k] = db[0][j][k] + db[0][f[0][j][k]][1 - k];}}for(int i = 2; i < N; ++i){for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){da[i][j][k] = da[i - 1][j][k] + da[i - 1][f[i - 1][j][k]][k];db[i][j][k] = db[i - 1][j][k] + db[i - 1][f[i - 1][j][k]][k];}}}
}

 

四.代码实现:

#include <bits/stdc++.h>
using namespace std;typedef long long ll;const int M = (int)1e5;
const int N = (int)17;
const ll inf = 0x3f3f3f3f3f3f3f3f;int n;
int h[M + 5];
int ga[M + 5], gb[M + 5];
int f[N][M + 5][2];
ll da[N][M + 5][2], db[N][M + 5][2];void read()
{scanf("%d", &n);for(int i = 1; i <= n; ++i)scanf("%d", &h[i]);
}void init_g()
{set < pair <ll, int> > st;st.emplace(make_pair(inf, 0));st.emplace(make_pair(inf + 1, 0));st.emplace(make_pair(-inf, 0));st.emplace(make_pair(-inf - 1, 0));for(int i = n; i >= 1; --i){auto j = st.lower_bound(make_pair(h[i], i));--j, --j;ll mn = inf, sm = inf;int mni, smi;for(int k = 0; k < 4; ++k){auto p = *j;ll d = (ll)abs(p.first - h[i]);if(d < mn){sm = mn, smi = mni;mn = d, mni = p.second;}else if(d < sm){sm = d, smi = p.second;}++j;}ga[i] = smi, gb[i] = mni;st.emplace(make_pair(h[i], i));}
}void init_f()
{for(int j = 1; j <= n; ++j){f[0][j][0] = ga[j];f[0][j][1] = gb[j];}for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){f[1][j][k] = f[0][f[0][j][k]][1 - k];}}for(int i = 2; i < N; ++i){for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){f[i][j][k] = f[i - 1][f[i - 1][j][k]][k];}}}
}int get_dist(int i, int j)
{return (int)abs(h[i] - h[j]);
}void init_d()
{for(int j = 1; j <= n; ++j){da[0][j][0] = get_dist(j, ga[j]), da[0][j][1] = 0;db[0][j][1] = 0, db[0][j][1] = get_dist(j, gb[j]);}for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){da[1][j][k] = da[0][j][k] + da[0][f[0][j][k]][1 - k];db[1][j][k] = db[0][j][k] + db[0][f[0][j][k]][1 - k];}}for(int i = 2; i < N; ++i){for(int j = 1; j <= n; ++j){for(int k = 0; k <= 1; ++k){da[i][j][k] = da[i - 1][j][k] + da[i - 1][f[i - 1][j][k]][k];db[i][j][k] = db[i - 1][j][k] + db[i - 1][f[i - 1][j][k]][k];}}}
}void init()
{init_g();init_f();init_d();
}void cal(int s, int x, int& la, int& lb)
{la = lb = 0;for(int i = N - 1; i >= 0; --i){if(f[i][s][0] && la + lb + da[i][s][0] + db[i][s][0] <= x){la += da[i][s][0];lb += db[i][s][0];s = f[i][s][0];}}
}void work()
{int s, x;scanf("%d", &x);int la, lb;int max_h = 0, ans;double min_r = inf, r;for(int i = 1; i <= n; ++i){cal(i, x, la, lb);r = lb ? 1.0 * la / lb : inf;if(r < min_r || r == min_r && h[i] > max_h){ans = i;min_r = r;max_h = h[i];}}printf("%d\n", ans);int m;scanf("%d", &m);while((m--) > 0){scanf("%d %d", &s, &x);cal(s, x, la, lb);printf("%d %d\n", la, lb);}
}int main()
{
//    freopen("input.txt", "r", stdin);read();init();work();return 0;
}

 

这篇关于开车旅行(算法竞赛进阶指南,倍增优化 DP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861656

相关文章

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱