代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(1)

本文主要是介绍代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

校准曲线图表示的是预测值和实际值的差距,作为预测模型的重要部分,目前很多函数能绘制校准曲线。
一般分为两种,一种是通过Hosmer-Lemeshow检验,把P值分为10等分,求出每等分的预测值和实际值的差距.

在这里插入图片描述
另外一种是calibration函数重抽样绘制连续的校准图

在这里插入图片描述
今天我们来视频演示第一种,手动绘制的好处在于加深你对绘图的理解,而且能个性化的进一步处理图形。第一种绘图本质就是我们的折线图,

R语言手动绘制logistic回归预测模型校准曲线(Calibration curve)(1)

代码

library(ggplot2)
library(rms)
#公众号:零基础说科研,公众号回复:早产数据,可以获得数据
bc<-read.csv("E:/r/test/zaochan.csv",sep=',',header=TRUE)
######
bc$race<-ifelse(bc$race=="black",1,ifelse(bc$race=="white",2,3))
bc$smoke<-ifelse(bc$smoke=="nonsmoker",0,1)
bc$race<-factor(bc$race)
bc$ht<-factor(bc$ht)
bc$ui<-factor(bc$ui)
#########
fit<-glm(low ~ age + lwt + race + smoke + ptl + ht + ui + ftv,family = binomial("logit"),data = bc)
#得出预测概率
pr1 <- predict(fit,type = c("response"))#得出预测概率
p = pr1
##使用order函数对P值排序,这里注意一下,order§排的是位置
sor <- order(p)
#P值按order来排列
p <- p[sor]
#Y值也按order来排列
y = bc[, "low"]
y <- y[sor]
###把P值分为10个等分区间
groep <- cut2(p, g = 10) #来自rms包
###计算每个等分的P值和Y值
meanpred <- round(tapply(p, groep, mean), 3)
meanobs <- round(tapply(y, groep, mean), 3)
##绘图
plot(meanpred, meanobs)
###修饰一下
plot(meanpred, meanobs,xlab = "Predicted risk", ylab = "Observed risk", pch = 16, ps = 2, xlim = c(0, 1), ylim = c(0, 1), cex.lab = 1.2, cex.axis = 1.1, las = 1)
abline(0, 1, col = "grey", lwd = 1, lty = 1)
######使用PredictABEL包的plotCalibration函数来验证一下我们计算的正确性
library(PredictABEL)
plotCalibration(data = bc,cOutcome = 2,#结果在第几行就选几predRisk = pr1,groups = 10,rangeaxis = c(0,1))
#########
source("E:/r/test/ggfit.R")#gg2<-function(data,p,y,group=1,leb) y1<-bc[, "low"]plot1<-gg2(bc,pr1,y1)ggplot(plot1, aes(x=meanpred, y=meanobs)) + geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+expand_limits(x = 0, y = 0) + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))+geom_point(size=3, shape=21, fill="white")+xlab("预测概率")+ylab("实际概率")gg3(bc,pr1,y1)

这篇关于代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861521

相关文章

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(