本文主要是介绍线性代数笔记25--复数矩阵、快速傅里叶变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. 复数矩阵
复向量
Z = [ z 1 z 2 z 3 z 4 ⋯ ] Z=\begin{bmatrix} z_1\\z_2\\z_3\\z_4\\ \cdots \end{bmatrix} Z= z1z2z3z4⋯
复向量的模长
∣ z ∣ = z ‾ ⊤ z = [ z ‾ 1 z ‾ 2 z ‾ 3 ] [ z 1 z 2 z 3 ] \lvert z\rvert=\overline z^{\top}z= \begin{bmatrix} \overline z_1\overline z_2\overline z_3 \end{bmatrix} \begin{bmatrix} z_1\\z_2\\z_3 \end{bmatrix} ∣z∣=z⊤z=[z1z2z3] z1z2z3
内积
y ⊤ x = [ y ‾ 1 y ‾ 2 y ‾ 3 ] [ x 1 x 2 x 3 ] y^{\top}x= \begin{bmatrix} \overline y_1\overline y_2\overline y_3 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} y⊤x=[y1y2y3] x1x2x3
实对称矩阵
A = A ⊤ A=A^{\top} A=A⊤
复对称矩阵
A = A ‾ ⊤ A=\overline A^{\top} A=A⊤
如
[ 2 3 − i 3 + i 5 ] \begin{bmatrix} 2 & 3 - i \\3 + i & 5 \end{bmatrix} [23+i3−i5]
垂直
q 1 q 2 q 3 ⋯ q n q ‾ i ⊤ q j = { 0 i ≠ j 1 i = j q_1\ q_2\ q_3\ \cdots q_n\\ \overline q_i^{\top}q_j= \begin{cases} 0 \quad i \ne j \\1\quad i = j \end{cases} q1 q2 q3 ⋯qnqi⊤qj={0i=j1i=j
复正交矩阵
Q ‾ ⊤ Q = I \overline Q^{\top}Q=I Q⊤Q=I
2. 快速傅里叶变换
F n = [ 1 1 1 ⋯ 1 1 ω ω 2 ⋯ ω n − 1 ⋮ ⋯ 1 ω n − 1 ω 2 ( n − 1 ) ⋯ ω ( n − 1 ) ( n − 1 ) ] F_n= \begin{bmatrix} 1 &1 & 1 & \cdots &1\\ 1 & \omega & \omega^2 & \cdots &\omega^{n-1}\\ \vdots &\cdots\\ 1 & \omega^{n-1} & \omega^{2(n-1) } & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} Fn= 11⋮11ω⋯ωn−11ω2ω2(n−1)⋯⋯⋯1ωn−1ω(n−1)(n−1)
F n ( i , j ) = w i j , ω n = 1 ω = e i 2 π n = cos 2 π n + i sin 2 π n F_n(i,j)=w^{ij},\omega^{n}=1\\ \omega=e^{i\frac{2 \pi}{n}}=\cos \frac{2\pi}{n}+i\sin \frac{2\pi}{n} Fn(i,j)=wij,ωn=1ω=ein2π=cosn2π+isinn2π
F 4 = [ 1 1 1 1 1 i i 2 i 3 1 i 2 i 4 i 6 1 i 3 i 6 i 9 ] = 2 2 [ 1 1 1 1 1 i − 1 − i 1 − 1 1 − 1 1 − i 1 i ] F_4= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & i & i^2 & i^3\\ 1 & i^2 & i ^4 & i^{6}\\ 1 & i^3 & i ^6 & i^9 \end{bmatrix}= \frac{\sqrt[]{2}}{2} \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & i & -1 & -i\\ 1 & -1 & 1 & -1\\ 1 & -i & 1 & i \end{bmatrix} F4= 11111ii2i31i2i4i61i3i6i9 =22 11111i−1−i1−1111−i−1i
矩阵各列正交。
ω n = e i × 2 π n \omega^{n}=e^{\frac{i \times2\pi }{ n}} ωn=eni×2π
w n ∗ w n = w 2 n w^{n}*w^{n}=w^{2n} wn∗wn=w2n
对于 n = 64 n=64 n=64,可以化为
[ F 64 ] = [ I D I − D ] [ F 32 0 0 F 32 ] [ 1 0 0 0 1 0 ⋯ ] [F_{64}]= \begin{bmatrix} I & D\\I & -D \end{bmatrix} \begin{bmatrix} F_{32} & 0 \\ 0 & F_{32} \end{bmatrix} \begin{bmatrix} 1 & 0 &0\\ 0 & 1 & 0\\ \cdots \end{bmatrix} [F64]=[IID−D][F3200F32] 10⋯0100
D D D是一个对角矩阵
D = [ 1 w w n − 1 ] D=\begin{bmatrix} 1 & & \\ &w & \\ & & w^{n-1} \end{bmatrix} D= 1wwn−1
对于 F 32 F_{32} F32可以继续做这样的分解,直到分解成 F 1 F_1 F1
即
F n = D M P F_{n}=DMP Fn=DMP
M M M为分解矩阵,分解成两个小规模的矩阵。
M = [ F n / 2 0 0 F n / 2 ] M=\begin{bmatrix} F_{n/2} & 0\\ 0 & F_{n/2} \end{bmatrix} M=[Fn/200Fn/2]
矩阵 P P P为奇偶位次置换矩阵。
t o d o todo todo
这篇关于线性代数笔记25--复数矩阵、快速傅里叶变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!