车道线检测_Canny算子边缘检测_1

2024-03-30 07:04

本文主要是介绍车道线检测_Canny算子边缘检测_1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Canny算子边缘检测(原理)

Canny算子边缘检测是一种经典的图像处理算法,由John F. Canny于1986年提出,用于精确、可靠地检测数字图像中的边缘特征。该算法设计时考虑了三个关键目标:低错误率(即尽可能多地检测真实的边缘,同时避免误报)、边缘定位的准确性(确保检测到的边缘位置与实际边缘位置紧密对应)以及边缘的单响应性(确保图像中的每一个边缘只被检测一次,避免重复或断裂)。Canny算子通过以下五个核心步骤实现这些目标:

  1. 图像灰度化

    • 如果输入图像为彩色,首先将其转换为灰度图像,因为Canny算子适用于处理单通道灰度图像。
  2. 高斯滤波(高斯模糊)

    • 应用高斯平滑滤波器对灰度图像进行滤波,以消除图像中的噪声。高斯滤波器通过卷积操作将每个像素值替换为周围像素值的加权平均,其中权重由二维高斯函数确定。这种滤波方式既能有效减弱噪声,又能较好地保留边缘细节,避免过度模糊导致边缘定位模糊。
  3. 计算梯度幅值和方向

    • 对经过高斯滤波的图像计算其梯度。梯度表示图像中像素灰度值的变化率,包含了边缘强度和方向的信息。通常使用一阶偏导数的近似算子(如Sobel算子、Prewitt算子或Roberts算子)来计算水平和垂直方向的梯度分量。然后根据这两个分量计算出梯度幅值(即边缘强度)和梯度方向。梯度方向通常用于后续的非极大值抑制步骤。
  4. 非极大值抑制

    • 该步骤旨在去除非边缘像素的响应,仅保留真正的边缘点。在梯度方向的直线上,检查每个像素的梯度幅值是否为其邻域内(在其梯度方向上)的最大值。如果不是,说明该像素可能不是真正的边缘点,将其梯度幅值置零或降低。这样可以消除边缘检测过程中的许多虚假响应,确保最终得到的边缘轮廓更为精确。
  5. 双阈值检测与边缘连接

    • 设置高低两个阈值,通常选择高阈值来确定强边缘,低阈值用于连接可能断开的弱边缘。具体操作如下:
      • 首先,将梯度幅值大于高阈值的像素标记为边缘像素,形成初步的边缘集。
      • 然后,对于幅值介于高低阈值之间的像素,如果它们与已标记为边缘的像素相邻(即位于已检测边缘的8邻域内),也被认为是边缘像素,以保证边缘的连续性。
      • 最终,只有通过上述条件的像素才被认为是有效的边缘点,其余像素则被舍弃。这种方法有助于减少边缘断裂的同时,抑制噪声引起的伪边缘。

        Canny算子通过一系列精心设计的步骤,实现了对图像边缘的稳健、精确检测,即使在存在噪声干扰的情况下也能保持较高的性能。由于其出色的综合性能,Canny算子在计算机视觉、图像分析、机器视觉等领域中被广泛应用,特别是在需要精确边缘信息的应用场景中,如物体轮廓检测、运动目标跟踪、图像分割等。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

边缘检测是基于灰度突变来分割图像的常用方法,其实质是提取图像中不连续部分的特征。目前常见边缘检测算子有差分算子、 Roberts 算子、 Sobel 算子、 Prewitt 算子、 Log 算子以及 Canny 算子等。

其中, Canny 算子是由计算机科学家 John F. Canny 于 1986 年提出的一种边缘检测算子,是目前理论上相对最完善的一种边缘检测算法。

Canny 算子在 MATLAB 、 OpenCV 等常用图像处理工具中已有内置的 API。

在 OpenCV 中, Canny 算子使用的函数是 Canny() ,它的原函数如下:

def Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None)

  • image: 表示此操作的源(输入图像)。
  • threshold1: 表示迟滞过程的第一个阈值。
  • threshold2: 表示迟滞过程的第二个阈值。

接下来,接着操作我们之前的马里奥,对马里奥做一次边缘检测看下效果:

import cv2 as cv
from matplotlib import pyplot as plt# 图像读入
img = cv.imread('maliao.jpg', 0)
edges = cv.Canny(img, 100, 200)# 显示结果
titles = ['Original Img', 'Edge Img']
images = [img, edges]# matplotlib 绘图
for i in range(2):plt.subplot(1, 2, i+1), plt.imshow(images[i],'gray')plt.title(titles[i])plt.xticks([]),plt.yticks([])plt.show()

图像转化(彩->灰)

  图像转化原因:边缘检测最关键的部分是计算梯度,颜色难以提供关键信息,并且颜色本身非常容易受到光照等因素的影响,所以只需要灰度图像中的信息就足够了。并且灰度化后,简化了矩阵,提高了运算速度。

    原理:将彩色图像(Color Image)转换为灰度图(Gray Scale Image),即从三通道RGB图像转为单通道图像。

    实现:我们实现彩图转化为灰度图需要用到opencv库中的cv.cvtColor函数,需要用到两个参数:src——输入图片,code——颜色转换代码,代码如下:

# 灰度图转换
def grayscale(num_img):for i in range(num_img):filename = 'img' + str(i) + '.jpg'img = cv2.imread(filename)img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)filename = 'img_gray' + str(i) + '.jpg'cv2.imwrite(filename, img_gray)

生成Mask掩膜,提取 ROI

代码如下:

# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):mask = np.zeros_like(image)  # 生成图像大小一致的zeros矩# 填充顶点vertices中间区域if len(image.shape) > 2:channel_count = image.shape[2]ignore_mask_color = (255,) * channel_countelse:ignore_mask_color = 255# 填充函数cv2.fillPoly(mask, vertices, ignore_mask_color)masked_image = cv2.bitwise_and(image, mask)return masked_image

Hough变换的路沿检测

Hough变换(原理)

        Hough变换是一种使用表决方式的参数估计技术,其原理是利用图像空间和Hough参数空间的线-点对偶性,把图像空间中的检测问题转换到参数空间中进行

基于霍夫变换的直线检测

用到的是Opencv封装好的函数cv.HoughLinesP函数,使用到的参数如下:

image:输入图像,通常为canny边缘检测处理后的图像
rho:线段以像素为单位的距离精度
theta:像素以弧度为单位的角度精度(np.pi/180较为合适)
threshold:霍夫平面累加的阈值
minLineLength:线段最小长度(像素级)
maxLineGap:最大允许断裂长度
具体代码如下:

def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):# rho:线段以像素为单位的距离精度# theta : 像素以弧度为单位的角度精度(np.pi/180较为合适)# threshold : 霍夫平面累加的阈值# minLineLength : 线段最小长度(像素级)# maxLineGap : 最大允许断裂长度lines = cv.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)return lines

高斯滤波

高斯滤波算法是一种去除高频噪声的常用方式,通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值都是由其本身和邻域内的其他像素值经过加权平均后得到的。高斯滤波的原理是根据待滤波的像素点及其邻域点的灰度值按照高斯公式生成的参数规则进行加权平均。

我们这一步需要用到opencv库中的cv.GaussianBlur函数,其中使用到的参数为:src——输入图像,kernel_size——高斯核的大小,sigma——高斯标准差(一般默认为0),具体代码如下:

# 高斯滤波
def gaussian_blur(image, kernel_size):return cv.GaussianBlur(image, (kernel_size, kernel_size), 0)

绘制高斯滤波后的效果图:

  1. 绘制车道线

图像融合

参考文章:python --opencv图像处理Canny算子边缘检测(Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr 算子、 LOG 算子)_分别用roberts算子、sobel算子、prewitt算子、拉普拉斯算子、log算子和canny算-CSDN博客

这篇关于车道线检测_Canny算子边缘检测_1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860799

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品

Android模拟器的检测

Android模拟器的检测 需求:最近有一个需求,要检测出模拟器,防止恶意刷流量刷注册。 1.基于特征属性来检测模拟器,比如IMSI,IDS,特殊文件等等。 这个方案局限性太大,貌似现在大部分模拟器默认就是修改了的,还不需要人为的去修改。 经过测试,发现如下图所示。 如果是模拟器的话,这些特殊值应该返回true,比如DeviceIDS,Build。可是居然返回了false,说明特殊值