数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组

本文主要是介绍数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 逼近理论的应用——最小二乘问题、解超定、欠定方程组
    • 离散平方逼近
    • 最小二乘解

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

逼近理论的应用——最小二乘问题、解超定、欠定方程组

离散平方逼近

设全空间 X = R n X=\mathbb{R}^n X=Rn, 在 R n \mathbb{R}_n Rn 中取 m < n m<n m<n 个线性无关的向量 ( X 1 , … , X m ) (X_1,\dots,X_m) (X1,,Xm),令 M = s p a n { X 1 , … , X m } M=span\{X_1,\dots,X_m\} M=span{X1,,Xm},则对任意 Y ∈ X \ M Y\in X\backslash M YX\M M M M 中存在唯一的最佳逼近元 X ∗ = ∑ i = 1 m c i X i X^*=\sum\limits_{i=1}^mc_iX_i X=i=1mciXi,其满足以下法方程组
∑ i = 1 m < X i , X j > c i = < Y , X j > \sum\limits_{i=1}^m<X_i,X_j>c_i=<Y,X_j> i=1m<Xi,Xj>ci=<Y,Xj>若设 A = [ X 1 , … , X m ] , C = [ c 1 , … , c m ] T A=[X_1,\dots,X_m],C=[c_1,\dots,c_m]^T A=[X1,,Xm],C=[c1,,cm]T,则方程组等效于
A T A C = A T Y A^TAC=A^TY ATAC=ATY

最小二乘解

求如下的最小化问题的解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2由离散平方逼近的理论,其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

应用:求解超定、欠定方程组

我们把线性方程组 A x = b Ax=b Ax=b 中,
未知数多于方程个数的方程组称为欠定方程组
未知数多于方程个数且有矛盾方程的方程组称为超定方程组

欠定方程组一般有多个解,超定方程组一般无解,故在工程上常用1范数或2范数意义下的最佳逼近解来作为解,即上述的最小二乘解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

参考书籍:《数值分析》李庆扬 王能超 易大义 编

这篇关于数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860233

相关文章

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如