标定系列——基于OpenCV实现普通相机、鱼眼相机不同标定板下的标定(五)

2024-03-29 08:36

本文主要是介绍标定系列——基于OpenCV实现普通相机、鱼眼相机不同标定板下的标定(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标定系列——基于OpenCV实现相机标定(五)

  • 说明
  • 代码解析
    • VID5.xml
    • in_VID5.xml
    • camera_calibration.cpp

说明

该程序可以实现多种标定板的相机标定工作

代码解析

VID5.xml

<?xml version="1.0"?><!-- 相机拍摄的标定板图像路径名 -->
<opencv_storage>
<images>
images/CameraCalibration/VID5/xx1.jpg
images/CameraCalibration/VID5/xx2.jpg
images/CameraCalibration/VID5/xx3.jpg
images/CameraCalibration/VID5/xx4.jpg
images/CameraCalibration/VID5/xx5.jpg
images/CameraCalibration/VID5/xx6.jpg
images/CameraCalibration/VID5/xx7.jpg
images/CameraCalibration/VID5/xx8.jpg
</images>
</opencv_storage>

in_VID5.xml

<?xml version="1.0"?>
<opencv_storage>
<Settings><!-- 标定板尺寸. (可以是正方形、圆形) --><BoardSize_Width>9</BoardSize_Width><BoardSize_Height>6</BoardSize_Height><!-- 用户定义的方格的尺寸 (像素,毫米)--><Square_Size>50</Square_Size><Marker_Size>25</Marker_Size><!-- 相机标定所使用的标定板类型. 可以是CHESSBOARD CHARUCOBOARD CIRCLES_GRID ASYMMETRIC_CIRCLES_GRID --><Calibrate_Pattern>"CHESSBOARD"</Calibrate_Pattern><ArUco_Dict_Name>DICT_4X4_50</ArUco_Dict_Name><ArUco_Dict_File_Name></ArUco_Dict_File_Name><!--  用于标定的输入来源。使用输入摄像头 -> 提供摄像头的ID,例如 "1"使用输入视频  -> 提供输入视频的路径,例如 "/tmp/x.avi"使用图像列表  -> 提供含有图像列表的XML或YAML文件的路径,例如 "/tmp/circles_list.xml"--><Input>"images/CameraCalibration/VID5/VID5.xml"</Input><!--  如果为真(非零),则沿水平轴翻转输入图像 --><Input_FlipAroundHorizontalAxis>0</Input_FlipAroundHorizontalAxis><!-- 摄像头的帧之间的时间延迟 --><Input_Delay>100</Input_Delay>	<!--  用于标定的帧数量 --><Calibrate_NrOfFrameToUse>25</Calibrate_NrOfFrameToUse><!-- 只考虑fy作为自由参数,比率fx/fy与输入cameraMatrix中的相同 --><Calibrate_FixAspectRatio> 1 </Calibrate_FixAspectRatio><!-- 如果为真(非零),切向畸变系数将被设置为零并保持为零 --><Calibrate_AssumeZeroTangentialDistortion>1</Calibrate_AssumeZeroTangentialDistortion><!-- 如果为真(非零),在全局优化过程中主点不会改变 --><Calibrate_FixPrincipalPointAtTheCenter> 1 </Calibrate_FixPrincipalPointAtTheCenter><!-- 输出日志文件名 --><Write_outputFileName>"out_camera_data.xml"</Write_outputFileName><!-- 如果为真(非零),将检测到的特征点写入输出文件 --><Write_DetectedFeaturePoints>1</Write_DetectedFeaturePoints><!-- 如果为真(非零),我们将外部相机参数写入输出文件 --><Write_extrinsicParameters>1</Write_extrinsicParameters><!--  如果为真(非零),我们将优化后的3D目标网格点写入输出文件 --><Write_gridPoints>1</Write_gridPoints><!-- 如果为真(非零),校准后我们显示无畸变的图像 --><Show_UndistortedImage>1</Show_UndistortedImage><!-- 如果为真(非零),将使用鱼眼相机模型进行标定 --><Calibrate_UseFisheyeModel>0</Calibrate_UseFisheyeModel><!-- 如果为真(非零),畸变系数k1将等于零 --><Fix_K1>0</Fix_K1><!-- 如果为真(非零),畸变系数k2将等于零  --><Fix_K2>0</Fix_K2><!-- 如果为真(非零),畸变系数k3将等于零 --><Fix_K3>0</Fix_K3><!-- 如果为真(非零),畸变系数k4将等于零 --><Fix_K4>1</Fix_K4><!-- 如果为真(非零),畸变系数k5将等于零 --><Fix_K5>1</Fix_K5>
</Settings>
</opencv_storage>

camera_calibration.cpp

核心代码就是camera_calibration.cpp,主要通过多张标定板图像进行相机的内参和畸变参数的计算,大体看了一下,里面的逻辑很清晰,就不做过多注解了

#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include "opencv2/objdetect/charuco_detector.hpp"using namespace cv;
using namespace std;class Settings
{
public:Settings() : goodInput(false) {}enum Pattern { NOT_EXISTING, CHESSBOARD, CHARUCOBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };enum InputType { INVALID, CAMERA, VIDEO_FILE, IMAGE_LIST };void write(FileStorage& fs) const                        //将数据写入文件{fs << "{"<< "BoardSize_Width"  << boardSize.width<< "BoardSize_Height" << boardSize.height<< "Square_Size"         << squareSize<< "Marker_Size"      << markerSize<< "Calibrate_Pattern" << patternToUse<< "ArUco_Dict_Name"   << arucoDictName<< "ArUco_Dict_File_Name" << arucoDictFileName<< "Calibrate_NrOfFrameToUse" << nrFrames<< "Calibrate_FixAspectRatio" << aspectRatio<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint<< "Write_DetectedFeaturePoints" << writePoints<< "Write_extrinsicParameters"   << writeExtrinsics<< "Write_gridPoints" << writeGrid<< "Write_outputFileName"  << outputFileName<< "Show_UndistortedImage" << showUndistorted<< "Input_FlipAroundHorizontalAxis" << flipVertical<< "Input_Delay" << delay<< "Input" << input<< "}";}void read(const FileNode& node)                          //从文件中读{node["BoardSize_Width"] >> boardSize.width;node["BoardSize_Height"] >> boardSize.height;node["Calibrate_Pattern"] >> patternToUse;node["ArUco_Dict_Name"] >> arucoDictName;node["ArUco_Dict_File_Name"] >> arucoDictFileName;node["Square_Size"] >> squareSize;node["Marker_Size"] >> markerSize;node["Calibrate_NrOfFrameToUse"] >> nrFrames;node["Calibrate_FixAspectRatio"] >> aspectRatio;node["Write_DetectedFeaturePoints"] >> writePoints;node["Write_extrinsicParameters"] >> writeExtrinsics;node["Write_gridPoints"] >> writeGrid;node["Write_outputFileName"] >> outputFileName;node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;node["Calibrate_UseFisheyeModel"] >> useFisheye;node["Input_FlipAroundHorizontalAxis"] >> flipVertical;node["Show_UndistortedImage"] >> showUndistorted;node["Input"] >> input;node["Input_Delay"] >> delay;node["Fix_K1"] >> fixK1;node["Fix_K2"] >> fixK2;node["Fix_K3"] >> fixK3;node["Fix_K4"] >> fixK4;node["Fix_K5"] >> fixK5;validate();}// 输入值验证void validate(){goodInput = true;if (boardSize.width <= 0 || boardSize.height <= 0){cerr << "Invalid Board size: " << boardSize.width << " " << boardSize.height << endl;goodInput = false;}if (squareSize <= 10e-6){cerr << "Invalid square size " << squareSize << endl;goodInput = false;}if (nrFrames <= 0){cerr << "Invalid number of frames " << nrFrames << endl;goodInput = false;}if (input.empty())      // Check for valid inputinputType = INVALID;else{if (input[0] >= '0' && input[0] <= '9'){stringstream ss(input);ss >> cameraID;inputType = CAMERA;}else{if (isListOfImages(input) && readStringList(input, imageList)){inputType = IMAGE_LIST;nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();}elseinputType = VIDEO_FILE;}if (inputType == CAMERA)inputCapture.open(cameraID);if (inputType == VIDEO_FILE)inputCapture.open(input);if (inputType != IMAGE_LIST && !inputCapture.isOpened())inputType = INVALID;}if (inputType == INVALID){cerr << " Input does not exist: " << input;goodInput = false;}flag = 0;if(calibFixPrincipalPoint) flag |= CALIB_FIX_PRINCIPAL_POINT;if(calibZeroTangentDist)   flag |= CALIB_ZERO_TANGENT_DIST;if(aspectRatio)            flag |= CALIB_FIX_ASPECT_RATIO;if(fixK1)                  flag |= CALIB_FIX_K1;if(fixK2)                  flag |= CALIB_FIX_K2;if(fixK3)                  flag |= CALIB_FIX_K3;if(fixK4)                  flag |= CALIB_FIX_K4;if(fixK5)                  flag |= CALIB_FIX_K5;if (useFisheye) {// the fisheye model has its own enum, so overwrite the flagsflag = fisheye::CALIB_FIX_SKEW | fisheye::CALIB_RECOMPUTE_EXTRINSIC;if(fixK1)                   flag |= fisheye::CALIB_FIX_K1;if(fixK2)                   flag |= fisheye::CALIB_FIX_K2;if(fixK3)                   flag |= fisheye::CALIB_FIX_K3;if(fixK4)                   flag |= fisheye::CALIB_FIX_K4;if (calibFixPrincipalPoint) flag |= fisheye::CALIB_FIX_PRINCIPAL_POINT;}calibrationPattern = NOT_EXISTING;if (!patternToUse.compare("CHESSBOARD")) calibrationPattern = CHESSBOARD;if (!patternToUse.compare("CHARUCOBOARD")) calibrationPattern = CHARUCOBOARD;if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;if (calibrationPattern == NOT_EXISTING){cerr << " Camera calibration mode does not exist: " << patternToUse << endl;goodInput = false;}atImageList = 0;}// 获取图像Mat nextImage(){Mat result;if( inputCapture.isOpened() ){Mat view0;inputCapture >> view0;view0.copyTo(result);}else if( atImageList < imageList.size() )result = imread(imageList[atImageList++], IMREAD_COLOR);return result;}//读取图像名,保存在vectorstatic bool readStringList( const string& filename, vector<string>& l ){l.clear();FileStorage fs(filename, FileStorage::READ);if( !fs.isOpened() )return false;FileNode n = fs.getFirstTopLevelNode();if( n.type() != FileNode::SEQ )return false;FileNodeIterator it = n.begin(), it_end = n.end();for( ; it != it_end; ++it )l.push_back((string)*it);return true;}static bool isListOfImages( const string& filename){string s(filename);// Look for file extensionif( s.find(".xml") == string::npos && s.find(".yaml") == string::npos && s.find(".yml") == string::npos )return false;elsereturn true;}public:Size boardSize;              // The size of the board -> Number of items by width and heightPattern calibrationPattern;  // One of the Chessboard, ChArUco board, circles, or asymmetric circle patternfloat squareSize;            // The size of a square in your defined unit (point, millimeter,etc).float markerSize;            // The size of a marker in your defined unit (point, millimeter,etc).string arucoDictName;        // The Name of ArUco dictionary which you use in ChArUco patternstring arucoDictFileName;    // The Name of file which contains ArUco dictionary for ChArUco patternint nrFrames;                // The number of frames to use from the input for calibrationfloat aspectRatio;           // The aspect ratioint delay;                   // In case of a video inputbool writePoints;            // Write detected feature pointsbool writeExtrinsics;        // Write extrinsic parametersbool writeGrid;              // Write refined 3D target grid pointsbool calibZeroTangentDist;   // Assume zero tangential distortionbool calibFixPrincipalPoint; // Fix the principal point at the centerbool flipVertical;           // Flip the captured images around the horizontal axisstring outputFileName;       // The name of the file where to writebool showUndistorted;        // Show undistorted images after calibrationstring input;                // The input ->bool useFisheye;             // use fisheye camera model for calibrationbool fixK1;                  // fix K1 distortion coefficientbool fixK2;                  // fix K2 distortion coefficientbool fixK3;                  // fix K3 distortion coefficientbool fixK4;                  // fix K4 distortion coefficientbool fixK5;                  // fix K5 distortion coefficientint cameraID;vector<string> imageList;size_t atImageList;VideoCapture inputCapture;InputType inputType;bool goodInput;int flag;private:string patternToUse;};static inline void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{if(node.empty())x = default_value;elsex.read(node);
}enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };bool runCalibrationAndSave(Settings& s, Size imageSize, Mat&  cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints, float grid_width, bool release_object);int main(int argc, char* argv[])
{const String keys= "{help h usage ? |           | print this message            }""{@settings      |default.xml| input setting file            }""{d              |           | actual distance between top-left and top-right corners of ""the calibration grid }""{winSize        | 11        | Half of search window for cornerSubPix }";CommandLineParser parser(argc, argv, keys);parser.about("This is a camera calibration sample.\n""Usage: camera_calibration [configuration_file -- default ./default.xml]\n""Near the sample file you'll find the configuration file, which has detailed help of ""how to edit it. It may be any OpenCV supported file format XML/YAML.");if (!parser.check()) {parser.printErrors();return 0;}if (parser.has("help")) {parser.printMessage();return 0;}//! [file_read]Settings s;const string inputSettingsFile = parser.get<string>(0);FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settingsif (!fs.isOpened()){cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;parser.printMessage();return -1;}fs["Settings"] >> s;fs.release();                                         // close Settings file//! [file_read]if (!s.goodInput){cout << "Invalid input detected. Application stopping. " << endl;return -1;}int winSize = parser.get<int>("winSize"); // 获取角点搜索窗口大小的一半float grid_width = s.squareSize * (s.boardSize.width - 1);if (s.calibrationPattern == Settings::Pattern::CHARUCOBOARD) {grid_width = s.squareSize * (s.boardSize.width - 2);}bool release_object = false;if (parser.has("d")) {grid_width = parser.get<float>("d");release_object = true;}// 创建CharucoBoard棋盘对象cv::aruco::Dictionary dictionary;// 如果标定模式为CHARUCOBOARD,创建相应的字典if (s.calibrationPattern == Settings::CHARUCOBOARD) {if (s.arucoDictFileName == "") {cv::aruco::PredefinedDictionaryType arucoDict;if (s.arucoDictName == "DICT_4X4_50") { arucoDict = cv::aruco::DICT_4X4_50; }else if (s.arucoDictName == "DICT_4X4_100") { arucoDict = cv::aruco::DICT_4X4_100; }else if (s.arucoDictName == "DICT_4X4_250") { arucoDict = cv::aruco::DICT_4X4_250; }else if (s.arucoDictName == "DICT_4X4_1000") { arucoDict = cv::aruco::DICT_4X4_1000; }else if (s.arucoDictName == "DICT_5X5_50") { arucoDict = cv::aruco::DICT_5X5_50; }else if (s.arucoDictName == "DICT_5X5_100") { arucoDict = cv::aruco::DICT_5X5_100; }else if (s.arucoDictName == "DICT_5X5_250") { arucoDict = cv::aruco::DICT_5X5_250; }else if (s.arucoDictName == "DICT_5X5_1000") { arucoDict = cv::aruco::DICT_5X5_1000; }else if (s.arucoDictName == "DICT_6X6_50") { arucoDict = cv::aruco::DICT_6X6_50; }else if (s.arucoDictName == "DICT_6X6_100") { arucoDict = cv::aruco::DICT_6X6_100; }else if (s.arucoDictName == "DICT_6X6_250") { arucoDict = cv::aruco::DICT_6X6_250; }else if (s.arucoDictName == "DICT_6X6_1000") { arucoDict = cv::aruco::DICT_6X6_1000; }else if (s.arucoDictName == "DICT_7X7_50") { arucoDict = cv::aruco::DICT_7X7_50; }else if (s.arucoDictName == "DICT_7X7_100") { arucoDict = cv::aruco::DICT_7X7_100; }else if (s.arucoDictName == "DICT_7X7_250") { arucoDict = cv::aruco::DICT_7X7_250; }else if (s.arucoDictName == "DICT_7X7_1000") { arucoDict = cv::aruco::DICT_7X7_1000; }else if (s.arucoDictName == "DICT_ARUCO_ORIGINAL") { arucoDict = cv::aruco::DICT_ARUCO_ORIGINAL; }else if (s.arucoDictName == "DICT_APRILTAG_16h5") { arucoDict = cv::aruco::DICT_APRILTAG_16h5; }else if (s.arucoDictName == "DICT_APRILTAG_25h9") { arucoDict = cv::aruco::DICT_APRILTAG_25h9; }else if (s.arucoDictName == "DICT_APRILTAG_36h10") { arucoDict = cv::aruco::DICT_APRILTAG_36h10; }else if (s.arucoDictName == "DICT_APRILTAG_36h11") { arucoDict = cv::aruco::DICT_APRILTAG_36h11; }else {cout << "incorrect name of aruco dictionary \n";return 1;}dictionary = cv::aruco::getPredefinedDictionary(arucoDict);}else {cv::FileStorage dict_file(s.arucoDictFileName, cv::FileStorage::Mode::READ);cv::FileNode fn(dict_file.root());dictionary.readDictionary(fn);}}else {// default dictionarydictionary = cv::aruco::getPredefinedDictionary(0);}// 创建CharucoBoard对象和检测器cv::aruco::CharucoBoard ch_board({s.boardSize.width, s.boardSize.height}, s.squareSize, s.markerSize, dictionary);cv::aruco::CharucoDetector ch_detector(ch_board);std::vector<int> markerIds;vector<vector<Point2f> > imagePoints;Mat cameraMatrix, distCoeffs;Size imageSize;int mode = s.inputType == Settings::IMAGE_LIST ? CAPTURING : DETECTION;clock_t prevTimestamp = 0;const Scalar RED(0,0,255), GREEN(0,255,0);const char ESC_KEY = 27;//! [get_input]// 循环处理图像for(;;){Mat view;bool blinkOutput = false;view = s.nextImage();//-----  If no more image, or got enough, then stop calibration and show result -------------if( mode == CAPTURING && imagePoints.size() >= (size_t)s.nrFrames ){// 调用标定函数,成功则切换到CALIBRATED模式,否则回到DETECTION模式if(runCalibrationAndSave(s, imageSize,  cameraMatrix, distCoeffs, imagePoints, grid_width,release_object))mode = CALIBRATED;elsemode = DETECTION;}if(view.empty())          // If there are no more images stop the loop{// if calibration threshold was not reached yet, calibrate nowif( mode != CALIBRATED && !imagePoints.empty() )runCalibrationAndSave(s, imageSize,  cameraMatrix, distCoeffs, imagePoints, grid_width,release_object);break;}//! [get_input]imageSize = view.size();  // Format input image.if( s.flipVertical )    flip( view, view, 0 );//! [find_pattern]vector<Point2f> pointBuf;bool found;int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;if(!s.useFisheye) {// fast check erroneously fails with high distortions like fisheyechessBoardFlags |= CALIB_CB_FAST_CHECK;}switch( s.calibrationPattern ) // Find feature points on the input format{case Settings::CHESSBOARD:found = findChessboardCorners( view, s.boardSize, pointBuf, chessBoardFlags);break;case Settings::CHARUCOBOARD:ch_detector.detectBoard( view, pointBuf, markerIds);found = pointBuf.size() == (size_t)((s.boardSize.height - 1)*(s.boardSize.width - 1));break;case Settings::CIRCLES_GRID:found = findCirclesGrid( view, s.boardSize, pointBuf );break;case Settings::ASYMMETRIC_CIRCLES_GRID:found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );break;default:found = false;break;}//! [find_pattern]//! [pattern_found]if (found)                // If done with success,{// improve the found corners' coordinate accuracy for chessboardif( s.calibrationPattern == Settings::CHESSBOARD){Mat viewGray;cvtColor(view, viewGray, COLOR_BGR2GRAY);cornerSubPix( viewGray, pointBuf, Size(winSize,winSize),Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001 ));}if( mode == CAPTURING &&  // For camera only take new samples after delay time(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) ){imagePoints.push_back(pointBuf);prevTimestamp = clock();blinkOutput = s.inputCapture.isOpened();}// Draw the corners.if(s.calibrationPattern == Settings::CHARUCOBOARD)drawChessboardCorners( view, cv::Size(s.boardSize.width-1, s.boardSize.height-1), Mat(pointBuf), found );elsedrawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );}//! [pattern_found]//----------------------------- Output Text ------------------------------------------------//! [output_text]string msg = (mode == CAPTURING) ? "100/100" :mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";int baseLine = 0;Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);if( mode == CAPTURING ){if(s.showUndistorted)msg = cv::format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );elsemsg = cv::format( "%d/%d", (int)imagePoints.size(), s.nrFrames );}putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ?  GREEN : RED);if( blinkOutput )bitwise_not(view, view);//! [output_text]//------------------------- Video capture  output  undistorted ------------------------------//! [output_undistorted]if( mode == CALIBRATED && s.showUndistorted ){Mat temp = view.clone();if (s.useFisheye){Mat newCamMat;fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,Matx33d::eye(), newCamMat, 1);cv::fisheye::undistortImage(temp, view, cameraMatrix, distCoeffs, newCamMat);}elseundistort(temp, view, cameraMatrix, distCoeffs);}//! [output_undistorted]//------------------------------ Show image and check for input commands -------------------//! [await_input]imshow("Image View", view);char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);if( key  == ESC_KEY )break;if( key == 'u' && mode == CALIBRATED )s.showUndistorted = !s.showUndistorted;if( s.inputCapture.isOpened() && key == 'g' ){mode = CAPTURING;imagePoints.clear();}//! [await_input]}// -----------------------Show the undistorted image for the image list ------------------------//! [show_results]if( s.inputType == Settings::IMAGE_LIST && s.showUndistorted && !cameraMatrix.empty()){Mat view, rview, map1, map2;if (s.useFisheye) // 如果使用鱼眼镜头模型进行畸变矫正{Mat newCamMat; // 定义新的相机矩阵// 估计畸变校正和矩形映射所需的新相机矩阵fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,Matx33d::eye(), newCamMat, 1);// 初始化畸变矫正和矩形映射fisheye::initUndistortRectifyMap(cameraMatrix, distCoeffs, Matx33d::eye(), newCamMat, imageSize,CV_16SC2, map1, map2);}else{initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0), imageSize,CV_16SC2, map1, map2);}for(size_t i = 0; i < s.imageList.size(); i++ ){view = imread(s.imageList[i], IMREAD_COLOR);if(view.empty())continue;remap(view, rview, map1, map2, INTER_LINEAR);imshow("Image View", rview);char c = (char)waitKey();if( c  == ESC_KEY || c == 'q' || c == 'Q' )break;}}//! [show_results]return 0;
}//! [compute_errors] 计算重映射误差的函数
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,const vector<vector<Point2f> >& imagePoints,const vector<Mat>& rvecs, const vector<Mat>& tvecs,const Mat& cameraMatrix , const Mat& distCoeffs,vector<float>& perViewErrors, bool fisheye)
{vector<Point2f> imagePoints2;size_t totalPoints = 0;double totalErr = 0, err;perViewErrors.resize(objectPoints.size());for(size_t i = 0; i < objectPoints.size(); ++i ){if (fisheye) // 如果是鱼眼镜头模型,使用fisheye命名空间的函数来投影点{fisheye::projectPoints(objectPoints[i], imagePoints2, rvecs[i], tvecs[i], cameraMatrix,distCoeffs);}else{projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);}err = norm(imagePoints[i], imagePoints2, NORM_L2);size_t n = objectPoints[i].size();perViewErrors[i] = (float) std::sqrt(err*err/n);totalErr        += err*err;totalPoints     += n;}return std::sqrt(totalErr/totalPoints);
}
//! [compute_errors]
//! [board_corners]计算棋盘格角点位置
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{corners.clear();switch(patternType){case Settings::CHESSBOARD: // 标准棋盘格case Settings::CIRCLES_GRID: // 圆形网格棋盘for (int i = 0; i < boardSize.height; ++i) {for (int j = 0; j < boardSize.width; ++j) {corners.push_back(Point3f(j*squareSize, i*squareSize, 0));}}break;case Settings::CHARUCOBOARD: // CHARUCO棋盘for (int i = 0; i < boardSize.height - 1; ++i) {for (int j = 0; j < boardSize.width - 1; ++j) {corners.push_back(Point3f(j*squareSize, i*squareSize, 0));}}break;case Settings::ASYMMETRIC_CIRCLES_GRID: // 非对称圆形网格for (int i = 0; i < boardSize.height; i++) {for (int j = 0; j < boardSize.width; j++) {corners.push_back(Point3f((2 * j + i % 2)*squareSize, i*squareSize, 0));}}break;default:break;}
}
//! [board_corners]
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,vector<float>& reprojErrs,  double& totalAvgErr, vector<Point3f>& newObjPoints,float grid_width, bool release_object)
{//! [fixed_aspect]cameraMatrix = Mat::eye(3, 3, CV_64F);if( !s.useFisheye && s.flag & CALIB_FIX_ASPECT_RATIO )cameraMatrix.at<double>(0,0) = s.aspectRatio;//! [fixed_aspect]if (s.useFisheye) {distCoeffs = Mat::zeros(4, 1, CV_64F);} else {distCoeffs = Mat::zeros(8, 1, CV_64F);}vector<vector<Point3f> > objectPoints(1);calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);if (s.calibrationPattern == Settings::Pattern::CHARUCOBOARD) {objectPoints[0][s.boardSize.width - 2].x = objectPoints[0][0].x + grid_width;}else {objectPoints[0][s.boardSize.width - 1].x = objectPoints[0][0].x + grid_width;}newObjPoints = objectPoints[0];objectPoints.resize(imagePoints.size(),objectPoints[0]);//Find intrinsic and extrinsic camera parametersdouble rms;if (s.useFisheye) {Mat _rvecs, _tvecs;rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, _rvecs,_tvecs, s.flag);rvecs.reserve(_rvecs.rows);tvecs.reserve(_tvecs.rows);for(int i = 0; i < int(objectPoints.size()); i++){rvecs.push_back(_rvecs.row(i));tvecs.push_back(_tvecs.row(i));}} else {int iFixedPoint = -1;if (release_object)iFixedPoint = s.boardSize.width - 1;rms = calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint,cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints,s.flag | CALIB_USE_LU);}if (release_object) {cout << "New board corners: " << endl;cout << newObjPoints[0] << endl;cout << newObjPoints[s.boardSize.width - 1] << endl;cout << newObjPoints[s.boardSize.width * (s.boardSize.height - 1)] << endl;cout << newObjPoints.back() << endl;}cout << "Re-projection error reported by calibrateCamera: "<< rms << endl;bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);objectPoints.clear();objectPoints.resize(imagePoints.size(), newObjPoints);totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix,distCoeffs, reprojErrs, s.useFisheye);return ok;
}// Print camera parameters to the output file
static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,const vector<Mat>& rvecs, const vector<Mat>& tvecs,const vector<float>& reprojErrs, const vector<vector<Point2f> >& imagePoints,double totalAvgErr, const vector<Point3f>& newObjPoints )
{FileStorage fs( s.outputFileName, FileStorage::WRITE );time_t tm;time( &tm );struct tm *t2 = localtime( &tm );char buf[1024];strftime( buf, sizeof(buf), "%c", t2 );fs << "calibration_time" << buf;if( !rvecs.empty() || !reprojErrs.empty() )fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());fs << "image_width" << imageSize.width;fs << "image_height" << imageSize.height;fs << "board_width" << s.boardSize.width;fs << "board_height" << s.boardSize.height;fs << "square_size" << s.squareSize;fs << "marker_size" << s.markerSize;if( !s.useFisheye && s.flag & CALIB_FIX_ASPECT_RATIO )fs << "fix_aspect_ratio" << s.aspectRatio;if (s.flag){std::stringstream flagsStringStream;if (s.useFisheye){flagsStringStream << "flags:"<< (s.flag & fisheye::CALIB_FIX_SKEW ? " +fix_skew" : "")<< (s.flag & fisheye::CALIB_FIX_K1 ? " +fix_k1" : "")<< (s.flag & fisheye::CALIB_FIX_K2 ? " +fix_k2" : "")<< (s.flag & fisheye::CALIB_FIX_K3 ? " +fix_k3" : "")<< (s.flag & fisheye::CALIB_FIX_K4 ? " +fix_k4" : "")<< (s.flag & fisheye::CALIB_RECOMPUTE_EXTRINSIC ? " +recompute_extrinsic" : "");}else{flagsStringStream << "flags:"<< (s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "")<< (s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "")<< (s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "")<< (s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "")<< (s.flag & CALIB_FIX_K1 ? " +fix_k1" : "")<< (s.flag & CALIB_FIX_K2 ? " +fix_k2" : "")<< (s.flag & CALIB_FIX_K3 ? " +fix_k3" : "")<< (s.flag & CALIB_FIX_K4 ? " +fix_k4" : "")<< (s.flag & CALIB_FIX_K5 ? " +fix_k5" : "");}fs.writeComment(flagsStringStream.str());}fs << "flags" << s.flag;fs << "fisheye_model" << s.useFisheye;fs << "camera_matrix" << cameraMatrix;fs << "distortion_coefficients" << distCoeffs;fs << "avg_reprojection_error" << totalAvgErr;if (s.writeExtrinsics && !reprojErrs.empty())fs << "per_view_reprojection_errors" << Mat(reprojErrs);if(s.writeExtrinsics && !rvecs.empty() && !tvecs.empty() ){CV_Assert(rvecs[0].type() == tvecs[0].type());Mat bigmat((int)rvecs.size(), 6, CV_MAKETYPE(rvecs[0].type(), 1));bool needReshapeR = rvecs[0].depth() != 1 ? true : false;bool needReshapeT = tvecs[0].depth() != 1 ? true : false;for( size_t i = 0; i < rvecs.size(); i++ ){Mat r = bigmat(Range(int(i), int(i+1)), Range(0,3));Mat t = bigmat(Range(int(i), int(i+1)), Range(3,6));if(needReshapeR)rvecs[i].reshape(1, 1).copyTo(r);else{//*.t() is MatExpr (not Mat) so we can use assignment operatorCV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);r = rvecs[i].t();}if(needReshapeT)tvecs[i].reshape(1, 1).copyTo(t);else{CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);t = tvecs[i].t();}}fs.writeComment("a set of 6-tuples (rotation vector + translation vector) for each view");fs << "extrinsic_parameters" << bigmat;}if(s.writePoints && !imagePoints.empty() ){Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);for( size_t i = 0; i < imagePoints.size(); i++ ){Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);Mat imgpti(imagePoints[i]);imgpti.copyTo(r);}fs << "image_points" << imagePtMat;}if( s.writeGrid && !newObjPoints.empty() ){fs << "grid_points" << newObjPoints;}
}//! [run_and_save]
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints, float grid_width, bool release_object)
{vector<Mat> rvecs, tvecs;vector<float> reprojErrs;double totalAvgErr = 0;vector<Point3f> newObjPoints;bool ok = runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,totalAvgErr, newObjPoints, grid_width, release_object);cout << (ok ? "Calibration succeeded" : "Calibration failed")<< ". avg re projection error = " << totalAvgErr << endl;if (ok)saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, imagePoints,totalAvgErr, newObjPoints);return ok;
}
//! [run_and_save]

注:该标定例程为OpenCV自带,可自行查找,也可从我的博客下载https://download.csdn.net/download/jppdss/89046059

这篇关于标定系列——基于OpenCV实现普通相机、鱼眼相机不同标定板下的标定(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858127

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文