卷积神经网络的基本概念——【1】卷积和池化

2024-03-27 21:44

本文主要是介绍卷积神经网络的基本概念——【1】卷积和池化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        卷积神经网络利用滤波器(即内核)来检测图像中展示的特征,例如边缘。卷积神经网络四个主要的操作如下:

  •         卷积
  •         非线性(ReLU)
  •         池化或子采样(Sub Sampling)
  •         分类(全连接层)

一、卷积

        卷积是两股信息源交织在一起的有序的过程;亦是一个把函数转换成其它东西的操作。

        卷积已经长时间在图像处理中被用于模糊和锐化图像,但也执行其它操作如增强边缘和浮雕(emboss)。卷积神经网络增强了相邻神经元之间的局部连接模式。

        卷积层:

         卷积神经网络的第一层永远是卷积层。卷积层对输入进行卷积操作,把结果传给下一层。一个卷积操作将感受野内的所有像素转换昵称一个值。例如,如果你对一个图像进行卷积操作,相当于你把图像尺寸变小了,或者说把感受野内所有的信息变成了一个像素。最后卷积层的输出就变成了一个vector向量,如[1,2,3]这种。基于要处理问题的类型和我们希望学习的特征的种类,我们可以使用不同种类的卷积。

二、池化

        池化操作包括在特征图的每个通道上滑动一个二维的滤波器,并求出被滤波器覆盖的区域的特征和。

        对于一个维度为的 n_h{} \times n_w{} \times n_c{} 特征图,经过一个池化层获得的输出的维度为:

       

其中, n_h{} ,n_w{}, n_c{}分别为特征图的高度、宽度、通道数目。f为滤波器的大小,s为滤波器移动的步长。

        一个常见的卷积神经网络模型结构有多个卷积和池化层,一个个堆叠在一起。

        使用池化的原因:池化层被用于减少特征图的维度,由此可以减少需要学习的参数和网络中计算的次数;池化层对卷积层产生的特征图的区域中的特征进行了求和,因此,更进一步的操作是在求和的特征上进行的,而不是被卷积层产生的精准位置的特征。池化使得模型对于输入图片的特征位置的变化更具有鲁棒性。

        最大池化(max pooling):

        平均池化是将滤波器覆盖范围内的特征图中的元素取平均值。因此最大池化就是给出特征图 特定批次patch的最显著特征,即取元素最大值。示例图如下:

这篇关于卷积神经网络的基本概念——【1】卷积和池化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853476

相关文章

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

【Rocketmq入门-基本概念】

Rocketmq入门-基本概念 名词解释名称服务器(NameServer)消息队列(Message Queue)主题(Topic)标签(Tag)生产者(Producer)消费者(Consumer)拉取模式(Pull)推送模式(Push)消息模型(Message Model) 关键组件Broker消息存储工作流程 名词解释 名称服务器(NameServer) 定义: 名称服务器

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

图神经网络(2)预备知识

1. 图的基本概念         对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E),  其 中V={V1,V2,…,Vn}  是一个具有 n 个顶点的集合。 1.1邻接矩阵         我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj)  组成了

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S

神经网络训练不起来怎么办(零)| General Guidance

摘要:模型性能不理想时,如何判断 Model Bias, Optimization, Overfitting 等问题,并以此着手优化模型。在这个分析过程中,我们可以对Function Set,模型弹性有直观的理解。关键词:模型性能,Model Bias, Optimization, Overfitting。 零,领域背景 如果我们的模型表现较差,那么我们往往需要根据 Training l