【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法

本文主要是介绍【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

节点故障网络拓扑变化示意

约束条件

目标函数

2 部分代码

3 结果一览

4 下载链接


1 主要内容

当前电力系统中微电网逐步成为发展的主力军,微网中包括分布式电源和负荷,单一的微电网是和外部电源进行连接,即保证用电的效益性,也要保证系统的稳定性,但是多个微电网是否可考虑通过电力网络结构设计来增加系统的鲁棒性,正是本模型考虑的内容。在该研究中,将多微网结构设计问题转化为数据模型,根据系统特点考虑了三种不同的节点类型,并通过基于大规模二进制矩阵的差分进化算法进行优化求解,通过算例验证了方法的有效性。该程序采用matlab编写,模块化编程,有部分注释,有需要的同学可以下载研究。

  • 节点故障网络拓扑变化示意

不同节点故障后,故障节点需要其他节点电源帮助恢复供电,上图即为三种情况下网络拓扑变化示意图。

  • 约束条件

对于I型节点来说,在节点i电源故障时,该类节点需要通过相邻节点电源进行补偿,以维持I节点负荷正常运转,也就是系统需要满足N-1的要求。该类节点约束的数学模型如下:

Si代表相邻节点对i节点可提供的电源功率支撑能力,Gj和Lj分别代表j节点的电源和负荷,通过上面约束能够看出,相邻节点的功率需要完全支撑起i节点的负荷。

对于II型节点,需满足两个节点同时故障仍然能保证系统正常工作,对应的约束数学模型如下:

对于III型节点,​需要满足系统N-3的要求,对应约束的数学模型如下:

  • 目标函数

该模型的主要任务是需要系统满足N-k的需求,并确保系统具有稳定性和鲁棒性,从成本角度来看,其目标是需要微网间连接线总长度最小,具体数学模型如下:

部分代码

clear; clc; close all
addpath(genpath(pwd));
​
nP = 20; % Number of nodes, options: 10, 20, 50, 80, 100
pID = 1; % Dataset ID, range: 1-5
timer = tic;
%% Problem parameter settings
load(['MNSDP-LIB\MNSDP_' num2str(nP) '_' num2str(pID) '.mat']);
​
%% Parameter settings
PopSize = min(10*MCS.N,500); % Population size
MaxGen = 50*MCS.N; % Maximum number of generations
plt = 1; % Whether to draw real-time optimization graphs during execution, default is off (can greatly improve running speed)
​
%% Initialization
Population = Init(PopSize,pID,MCS);
ConvergenceF = zeros(2,PopSize);
ConvergenceCV = zeros(2,PopSize);
Gb=inf;
​
%% Start optimization and solving
fprintf('Number of nodes: %3d, Dataset ID: %d\n', nP, pID)
BMODE();
​
%% Optimization completed
timer = toc(timer);
disp(['Time used: ' num2str(timer) ' seconds']);
BestSol = BestInd(end);
​
figure
PlotSol() % Plot solution
​

结果一览

4 下载链接

这篇关于【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851384

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、