Keras(十七)关于feature_column的使用、keras模型转tf.estimator

2024-03-26 15:48

本文主要是介绍Keras(十七)关于feature_column的使用、keras模型转tf.estimator,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将介绍:

  • 加载Titanic数据集
  • 使用feature_column做数据处理,并转化为tf.data.dataset类型数据
  • keras_to_estimator

一,加载Titanic数据集

1,下载Titanic数据集,使用pandas读取并解析数据集
# 在如下的两个网址下载数据
# https://storage.googleapis.com/tf-datasets/titanic/train.csv
# https://storage.googleapis.com/tf-datasets/titanic/eval.csvimport matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras# 打印使用的python库的版本信息
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:print(module.__name__, module.__version__)train_file = "./data/titanic/train.csv"
eval_file = "./data/titanic/eval.csv"train_df = pd.read_csv(train_file)
eval_df = pd.read_csv(eval_file)print(train_df.head()) # 默认取出前5条数据
print(eval_df.head())
2,分离出特征值和目标值
y_train = train_df.pop('survived')
y_eval = eval_df.pop('survived')print(train_df.head())
print(eval_df.head())
print(y_train.head())
print(y_eval.head())
3,使用panda对数值型数据的字段进行统计
print(train_df.describe())# ---output------age  n_siblings_spouses       parch        fare
count  627.000000          627.000000  627.000000  627.000000
mean    29.631308            0.545455    0.379585   34.385399
std     12.511818            1.151090    0.792999   54.597730
min      0.750000            0.000000    0.000000    0.000000
25%     23.000000            0.000000    0.000000    7.895800
50%     28.000000            0.000000    0.000000   15.045800
75%     35.000000            1.000000    0.000000   31.387500
max     80.000000            8.000000    5.000000  512.329200
4,查看数据集中的测试集,验证集的数据维度
print(train_df.shape, eval_df.shape)# ---output------
(627, 9) (264, 9)
5,使用pands中的matplotlib绘制图表,更直观的了解数据
1)统计-年龄直观图
train_df.age.hist(bins = 50)# bins是将所有数据分为多少份
2)统计-性别直观图
# value_counts() --> 将value归类并按类计数
train_df.sex.value_counts().plot(kind = 'barh') # 横向的柱状图是"barh";纵向的柱状图"bar"
3)统计-不同仓位的乘客各有多少
train_df['class'].value_counts().plot(kind = 'barh')
4)统计-在Titanic中,男性有多少人获救了,女性有多少人获救了
pd.concat([train_df, y_train], axis = 1).groupby('sex').survived.mean()
pd.concat([train_df, y_train], axis = 1).groupby('sex').survived.mean().plot(kind='barh')

二,使用feature_column做数据处理,并转化为tf.data.dataset类型数据

1,将"离散特征"和"连续特征"整合为one-hot编码
1)将特征分为"离散特征"和"连续特征"两个列表
categorical_columns = ['sex', 'n_siblings_spouses', 'parch', 'class','deck', 'embark_town', 'alone']
numeric_columns = ['age', 'fare']feature_columns = []
2)使用tf.feature_column对"离散特征"做处理
for categorical_column in categorical_columns:vocab = train_df[categorical_column].unique()print(categorical_column, vocab)feature_columns.append(tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list(categorical_column, vocab)))# ---output------
sex ['male' 'female']
n_siblings_spouses [1 0 3 4 2 5 8]
parch [0 1 2 5 3 4]
class ['Third' 'First' 'Second']
deck ['unknown' 'C' 'G' 'A' 'B' 'D' 'F' 'E']
embark_town ['Southampton' 'Cherbourg' 'Queenstown' 'unknown']
alone ['n' 'y']
3)使用tf.feature_column对"连续特征"做处理
for categorical_column in numeric_columns:feature_columns.append(tf.feature_column.numeric_column(categorical_column, dtype=tf.float32))
2,将ndarray数据转化为tf.data.dataset中的BatchDataset类型数据
def make_dataset(data_df, label_df, epochs = 10, shuffle = True,batch_size = 32):dataset = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df))if shuffle:dataset = dataset.shuffle(10000)dataset = dataset.repeat(epochs).batch(batch_size)return datasettrain_dataset = make_dataset(train_df, y_train, batch_size = 5)# 查看转化后的tf.data.dataset中的一条数据的信息
for x, y in train_dataset.take(1):print(x, y)# ---output---------
{'sex': <tf.Tensor: shape=(5,), dtype=string, numpy=array([b'female', b'male', b'male', b'male', b'male'], dtype=object)>, 'age': <tf.Tensor: shape=(5,), dtype=float64, numpy=array([32., 28., 44., 28., 28.])>, 'n_siblings_spouses': <tf.Tensor: shape=(5,), dtype=int32, numpy=array([1, 0, 1, 0, 0], dtype=int32)>, 'parch': <tf.Tensor: shape=(5,), dtype=int32, numpy=array([1, 0, 0, 0, 0], dtype=int32)>, 'fare': <tf.Tensor: shape=(5,), dtype=float64, numpy=array([15.5   ,  7.2292, 26.    ,  8.05  ,  7.8958])>, 'class': <tf.Tensor: shape=(5,), dtype=string, numpy=array([b'Third', b'Third', b'Second', b'Third', b'Third'], dtype=object)>, 'deck': <tf.Tensor: shape=(5,), dtype=string, numpy=
array([b'unknown', b'unknown', b'unknown', b'unknown', b'unknown'],dtype=object)>, 'embark_town': <tf.Tensor: shape=(5,), dtype=string, numpy=
array([b'Queenstown', b'Cherbourg', b'Southampton', b'Southampton',b'Southampton'], dtype=object)>, 'alone': <tf.Tensor: shape=(5,), dtype=string, numpy=array([b'n', b'y', b'n', b'y', b'y'], dtype=object)>} tf.Tensor([0 1 0 0 0], shape=(5,), dtype=int32)
3,使用keras.layers.DenseFeature将一条数据其中两个字段转化为one-hot处理后的数据
# keras.layers.DenseFeature
for x, y in train_dataset.take(1):age_column = feature_columns[7]gender_column = feature_columns[0]print(keras.layers.DenseFeatures(age_column)(x).numpy())print(keras.layers.DenseFeatures(gender_column)(x).numpy())# ---output----------
[[28.][50.][27.][28.][32.]][[1. 0.][0. 1.][0. 1.][0. 1.][1. 0.]]
4,使用keras.layers.DenseFeature将一条数据中所有字段转化为one-hot处理后的数据
# keras.layers.DenseFeature
for x, y in train_dataset.take(1):print(keras.layers.DenseFeatures(feature_columns)(x).numpy())

三,keras_to_estimator

1,定义keras模型,输入层输入为转化为one-hot处理后的数据
model = keras.models.Sequential([keras.layers.DenseFeatures(feature_columns),keras.layers.Dense(100, activation='relu'),keras.layers.Dense(100, activation='relu'),keras.layers.Dense(2, activation='softmax'),
])
model.compile(loss='sparse_categorical_crossentropy',optimizer = keras.optimizers.SGD(lr=0.01),metrics = ['accuracy'])
2,训练模型

训练模型可以使用如下两种方法:

1)使用普通的model模型训练
train_dataset = make_dataset(train_df, y_train, epochs = 100)
eval_dataset = make_dataset(eval_df, y_eval, epochs = 1, shuffle = False)
history = model.fit(train_dataset,validation_data = eval_dataset,steps_per_epoch = 19,validation_steps = 8,epochs = 100)
2)使用转化为estimator后的model模型训练

注:在tensorflow2中该方法还存在bug,待解决。

estimator = keras.estimator.model_to_estimator(model)
# 1. function
# 2. return a. (features, labels) b. dataset -> (feature, label)
estimator.train(input_fn = lambda : make_dataset(train_df, y_train, epochs=100))

这篇关于Keras(十七)关于feature_column的使用、keras模型转tf.estimator的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849014

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.