Raki的读paper小记:通过教师-学生模型在目标语言上的无标注数据上学习来实现单源/多源跨语言NER任务 from ACL2020

本文主要是介绍Raki的读paper小记:通过教师-学生模型在目标语言上的无标注数据上学习来实现单源/多源跨语言NER任务 from ACL2020,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Single-/Multi-Source Cross-Lingual NER via Teacher-Student Learning on Unlabeled Data in Target Language

不要问我为什么改成了中文名,因为标题名字太长了!!

Abstract & Introduction & Related Work

  • 研究任务
    通过教师-学生模型在目标语言上的无标注数据上学习来实现单源/多源跨语言NER任务
  • 已有方法和相关工作
    1. 以前关于跨语言NER的工作大多是基于成对文本的标签投射或直接模型转移。
    2. 通过在可比语料库上的标签投影,为目标语言自动标注NER数据,并开发了一个启发式方案来选择高质量的投影标注的数据。
    3. 在短语/词的层面上翻译源语言标记的数据,以生成目标语言的成对标记的数据。
    4. 在源语言的标记数据上训练一个共享的NER模型,该模型具有与语言无关的特征,如跨语言的词汇表征(Devlin等人,2019),然后在目标语言上直接测试模型。
  • 面临挑战
    1. 如果源语言中的标记数据不可用,或者没有利用目标语言中的无标记数据所包含的信息,那么这些方法就不适用
    2. 前者依靠源语言中的标签数据进行标签投射,因此在所需的标签数据无法获取的情况下(例如,由于隐私/敏感性问题),并不适用。同时,后者没有利用目标语言中的无标签数据,而后者的获取成本要低得多,而且可能包含非常有用的语言信息
  • 创新思路
    1. 使用教师模型来预测软标签而不是硬标签,因为软标签能提供更多的信息
    2. 相比直接迁移,带有成对文本的标签投射,使用源模型来预测软性标签在这里插入图片描述- 实验结论
      在这里插入图片描述

Methodology

Single-Source Cross-Lingual NER

NER Model Structure

单教师的训练模型
在这里插入图片描述
首先经过一个encoder层进行编码
在这里插入图片描述
然后经过一个线性层,再通过softmax得到推理的分布
在这里插入图片描述

Teacher-Student Learning

Training

训练学生模型来模仿教师模型在目标语言上对实体标签的分布的输出,这样能使教师模型的知识迁移到学生模型上,而学生模型也可以利用未标记的目标语言数据中的有用的特定语言信息

学生模型和教师模型对第i个token的实体分布输出分别为:
在这里插入图片描述
定义教师-学生模型的损失函数:
在这里插入图片描述
总损失:
在这里插入图片描述

Multi-Source Cross-Lingual NER

在这里插入图片描述

Extension to Multiple Teacher Models

k个教师模型的组合
在这里插入图片描述

Weighting Teacher Models

源语言和目标语言相似度更高就应该分配更高的权重

Without Any Source-Language Data

平均分配
在这里插入图片描述

With Unlabeled Source-Language Data

由于没有标注数据,已有的监督学习方法并不适用,在此引入一个语言辅助识别任务来计算源语言与目标语言之间的相似度,然后根据这个指标对教师模型进行加权

用一个双线性模型来对句子u和第k种语言的可学习向量 μ \mu μ 进行计算
在这里插入图片描述
在这里插入图片描述
P是讲所有的 μ \mu μ 堆叠起来形成的矩阵,我们可以推导出特定语言的概率分布
在这里插入图片描述
参数M和P是通过使用交叉熵损失经过训练,可以识别源语言合集中每个句子的语言

正则项鼓励语言嵌入向量的不同维度来关注不同的方面
在这里插入图片描述
通过softmax来计算权重参数
在这里插入图片描述

Experiments

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Conclusion

在本文中,我们提出了一种用于单/多源跨语言NER的师生学习方法,通过使用源语言模型作为教师,在目标语言的未标记数据上训练学生模型。该方法不依赖于源语言的标记数据,能够利用未标记的目标语言数据中的额外信息,这解决了以前基于标签投影和基于模型转移的方法的局限性。我们还提出了一种基于语言识别的语言相似性测量方法,以更好地衡量不同的教师模型。在基准数据集上进行的大量实验表明,我们的方法优于现有的sota

Remark

截止2022年2月7,这篇paper的方法在Cross-Lingual NER on CoNLL German数据集上仍然是sota,说明这个方法确实蛮有效的,整整一年也没有新sota出来(可能是做这个方向的人少?),总之novelty感觉算是中规中矩,模型还算简单,个人认为是蛮不错的一篇paper

这篇关于Raki的读paper小记:通过教师-学生模型在目标语言上的无标注数据上学习来实现单源/多源跨语言NER任务 from ACL2020的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848809

相关文章

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构