Tensorflow 训练模型数据freeze固话保存在Graph中

2024-03-24 16:18

本文主要是介绍Tensorflow 训练模型数据freeze固话保存在Graph中,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在tensorflow中,graph是训练的核心,当一个模型训练完成后,需要将模型保存下来,一个通常的操作是:

variables = tf.all_variables()saver = tf.train.Saver(variables)saver.save(sess, "data/data.ckpt")
tf.train.write_graph(sess.graph_def, 'graph', 'model.ph', False)

这样就可以将model保存在model.ph文件中,然而使用的时候不仅要加载模型文件model.ph,还要加载保存的data.ckpt数据文件才能使用。这样保持了数据与模型的分离,确实是个不错的方法。
当我们把一个训练模型完整的训练好上线时候,我们期待的场景是:将一张图片喂进去,然后得出结果。 这时候再这样加载或许有些不必要,特别是在一些变量”不明”的时候特别麻烦.这时候一个比较好的方法就是将变量(偏执,权重等)固化到模型数据中。

创建图

在文件开头增加如下代码
这里写图片描述

声明tensor

在需要的操作添加
这里写图片描述

固化保存

这里写图片描述

固化操作中最重要的函数是:

tf.graph_util.convert_variables_to_constants(sess, input_graph_def, output_node_names, variable_names_whitelist=None, variable_names_blacklist=None)

代码运行后控制台打印:
这里写图片描述
这样在我们使用的时候就不要再进行data.ckpt的数据恢复。直接通过:

sess.graph.get_tensor_by_name()

就可以获取一个tensor,是不是很方便。

小报错:

  • assert d in name_to_node_map, “%s is not in graph” % d
    AssertionError: A is not in graph
    解决:仔细查看tensor名称是否正确。
  • NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for checkpoint.ckpt
    分析:说是加载不到,但是路径和文件名没有错
    解决:google找到https://github.com/tensorflow/tensorflow/issues/6082
    就是加一个”./”,指定当前目录。

    参考文章:
    http://blog.csdn.net/lujiandong1/article/details/53385092
    http://blog.csdn.net/searobbers_duck/article/details/51721916

这篇关于Tensorflow 训练模型数据freeze固话保存在Graph中的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842112

相关文章

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB