代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法

本文主要是介绍代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全文基于代码随想录及相关讲解视频。
文字链接:《代码随想录》

文章目录

  • 二叉树的递归遍历
    • 二叉树的前序遍历
      • C++代码如下
    • 二叉树的中序遍历
    • 二叉树的后序遍历
  • 二叉树的迭代遍历
    • 前序遍历
      • 前序遍历C++代码
    • 右序遍历
      • 右序遍历C++代码
    • 中序遍历
      • 为什么中序遍历不同
      • 中序遍历迭代法的过程
      • 中序遍历C++代码
  • 二叉树的统一迭代法
    • 中序遍历
    • 前序遍历
    • 后序遍历

二叉树的递归三部曲:(非常重要,每一题几乎都要拿来分析)

  • 确定递归函数的参数和返回值
  • 确定终止条件
  • 确定单层递归的逻辑

二叉树的递归遍历

  • 144.二叉树的前序遍历
  • 145.二叉树的后序遍历
  • 94.二叉树的中序遍历

二叉树的前序遍历

前序是中左右的遍历顺序

  • 确定递归函数的参数和返回值:

​ 参数并不是要一次性确定的,在写递归函数的过程中我们需要什么样的参数,再传入什么样的参数即可,不过大多数二叉树的题目所需要的参数并不多,基本就是传入一个根结点,在传入一个数组来放我们遍历的结果返回值一般都是void,因为我们需要的结果已经放入到传入参数的数组里了

​ 就本题来说void traversal(TreeNode* cur, vector<int>& vec)

  • 确定终止条件:

​ 确定终止条件对于递归来说也非常重要,对于一个前序遍历,当他猛猛搜索一直搜索到null那肯定就往上返。

if (cur == NULL) return;

  • 确定单层递归的逻辑

​ 单层递归逻辑其实就是在递归函数中要写的东西,这里我们实现的中左右,所以我们要处理的结点首先是中间节点。所以数组要放我们遍历过的元素vec.push(cur->val);什么是左呢,就是向左遍历traversal(cur->left, val);右就是遍历它的右孩子traversal(cur->right, vec);这样我们就实现了中序遍历。

综上伪代码如下:

void traversal(TreeNode* cur, vector<int>& vec)if (cur == NULL) return;//中vec.push(cur->val)//左traversal(cur->left, val)//右traversal(cur->right, vec)

写前序、中序、后序代码的原则跟我们讲的前序的顺序一致:

中序:

	//左traversal(cur->left, val)//中vec.push(cur->val)//右traversal(cur->right, vec)

后序同理。

C++代码如下

class Solution {
public:void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;vec.push_back(cur->val);    // 中traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右}vector<int> preorderTraversal(TreeNode* root) {vector<int> result;traversal(root, result);return result;}
};

二叉树的中序遍历

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左vec.push_back(cur->val);    // 中traversal(cur->right, vec); // 右
}

二叉树的后序遍历

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右vec.push_back(cur->val);    // 中
}

二叉树的迭代遍历

看完本篇大家可以使用迭代法,再重新解决如下三道leetcode上的题目:

  • 144.二叉树的前序遍历
  • 94.二叉树的中序遍历
  • 145.二叉树的后序遍历

文章链接:非递归遍历

视频链接:写出二叉树的非递归遍历很难么?(前序和后序)

写出二叉树的非递归遍历很难么?(中序)

前序遍历

​ A
/ \
B C
/ \
D E

对于以上的二叉树,遍历顺序是ABDEC。编程语言实现递归其实就是用栈来实现的,所以我们这里用迭代来模拟递归,也是用栈这种结构。理论上来讲所有递归都能用栈来模拟。

栈底[ ]栈顶 栈入作所示,先把A入栈,然后把A弹出。为什么要弹出呢,因为我们要把A放入数组里了,因为A是我们要处理的元素。A弹出之后,我们要处理A的左右孩子。然后依次把C、B入栈。此时:栈底[C, B]栈顶。本来我们要拿到B,但是先把C入栈,这是因为栈是先进后出的,这样我们就能先拿B,再拿C,实现中左右的遍历顺序。然后我们弹出B放入数组,现在数组是[A, B]。后面对于B的子树的处理同理。具体可以看上文视频。

再一个就是碰到叶子结点就不用处理它的左右孩子了。

详细代码如下:

前序遍历C++代码

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();                       // 中st.pop();result.push_back(node->val);if (node->right) st.push(node->right);           // 右(空节点不入栈)if (node->left) st.push(node->left);             // 左(空节点不入栈)}return result;}
};

右序遍历

20200808200338924

我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了

右序遍历C++代码

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();result.push_back(node->val);if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)if (node->right) st.push(node->right); // 空节点不入栈}reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了return result;}
};

中序遍历

为什么中序遍历不同

之前代码有两个重点,一个是访问结点,一个是处理结点。访问结点就是在二叉树中从根结点开始一个结点一个结点开始访问;处理结点就是结点元素保存到数组中,这个数组就是我们要输出的顺序。

如果是中序遍历,对于上文的二叉树:

​ A

/
B C
/ \
D E

我们还是要先访问根结点,但是我们先处理的却不能是根结点,中序遍历的第一个元素应该是D。这就造成了我们访问的顺序和我们处理的顺序不一样。这就是为什么我们的中序遍历是另外一套写法。

中序遍历迭代法的过程

中序遍历为:DBEAC

首先还是要用栈来记录我们遍历过的顺序,因为我们处理元素的时候其实按遍历顺序逆向输出的

我们先访问A,然后把A入栈,然后访问B把B入栈,然后是D,把D入栈。此时我们到叶子结点了(怎么知道到叶子结点了呢?因为我们再访问D的左孩子是空,所以肯定是叶子结点)。也就是因为D的左孩子为空,我们从栈取元素,就是D,D就是我们要处理的第一个元素。此时把D看成一个独立的二叉树。D是中,左右都是空,所以第一个输出的元素是D,把D加入到数组里。

然后由于D右也是空,我们就把B弹出来加入到数组。

然后B的右孩子不为空,栈记录我们遍历的元素E,然后指针还是往E的左孩子走,又是空!所以我们就把E弹出。

随后看E的右孩子,也是空!,所以我们就再从栈内弹出元素A加入到数组中。

然后就找A的右孩子C加入到数组中。然后C的左孩子为空,所以把C弹出加入数组,再看C的右孩子,也为空,理论上我们应该从栈内弹出元素,但是栈也为空了,所以我们的遍历流程就结束了。

综上,数组中的顺序为DBEAC,与答案一致

伪代码如下:

 vector<int> traversal (root){vector<int> result;stack<TreeNode*> st;Treenode* cur = root; //当前结点指向根结点while (cur != NUll || !st.empty()){if (cur != Null)	//如果当前元素不为空{st.push(cur);	//吧当前方位的元素加入到栈里 cur = cur->left; //当前结点往左走}else{cur = st.top(); st.pop();result.push_back(cur->val);cur = cur->right;}return result;   }}

中序遍历C++代码

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;TreeNode* cur = root;while (cur != NULL || !st.empty()) {if (cur != NULL) { // 指针来访问节点,访问到最底层st.push(cur); // 将访问的节点放进栈cur = cur->left;                // 左} else {cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)st.pop();result.push_back(cur->val);     // 中cur = cur->right;               // 右}}return result;}
};

二叉树的统一迭代法

主要思想就是利用一个栈来完成遍历结点和处理结点的过程。

统一风格代码如下:

中序遍历

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中if (node->right) st.push(node->right);  // 添加右节点(空节点不入栈)st.push(node);                          // 添加中节点st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。if (node->left) st.push(node->left);    // 添加左节点(空节点不入栈)} else { // 只有遇到空节点的时候,才将下一个节点放进结果集st.pop();           // 将空节点弹出node = st.top();    // 重新取出栈中元素st.pop();result.push_back(node->val); // 加入到结果集}}return result;}
};

前序遍历

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();if (node->right) st.push(node->right);  // 右if (node->left) st.push(node->left);    // 左st.push(node);                          // 中st.push(NULL);} else {st.pop();node = st.top();st.pop();result.push_back(node->val);}}return result;}
};

后序遍历

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();st.push(node);                          // 中st.push(NULL);if (node->right) st.push(node->right);  // 右if (node->left) st.push(node->left);    // 左} else {st.pop();node = st.top();st.pop();result.push_back(node->val);}}return result;}
};

这篇关于代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838474

相关文章

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo