代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法

本文主要是介绍代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全文基于代码随想录及相关讲解视频。
文字链接:《代码随想录》

文章目录

  • 二叉树的递归遍历
    • 二叉树的前序遍历
      • C++代码如下
    • 二叉树的中序遍历
    • 二叉树的后序遍历
  • 二叉树的迭代遍历
    • 前序遍历
      • 前序遍历C++代码
    • 右序遍历
      • 右序遍历C++代码
    • 中序遍历
      • 为什么中序遍历不同
      • 中序遍历迭代法的过程
      • 中序遍历C++代码
  • 二叉树的统一迭代法
    • 中序遍历
    • 前序遍历
    • 后序遍历

二叉树的递归三部曲:(非常重要,每一题几乎都要拿来分析)

  • 确定递归函数的参数和返回值
  • 确定终止条件
  • 确定单层递归的逻辑

二叉树的递归遍历

  • 144.二叉树的前序遍历
  • 145.二叉树的后序遍历
  • 94.二叉树的中序遍历

二叉树的前序遍历

前序是中左右的遍历顺序

  • 确定递归函数的参数和返回值:

​ 参数并不是要一次性确定的,在写递归函数的过程中我们需要什么样的参数,再传入什么样的参数即可,不过大多数二叉树的题目所需要的参数并不多,基本就是传入一个根结点,在传入一个数组来放我们遍历的结果返回值一般都是void,因为我们需要的结果已经放入到传入参数的数组里了

​ 就本题来说void traversal(TreeNode* cur, vector<int>& vec)

  • 确定终止条件:

​ 确定终止条件对于递归来说也非常重要,对于一个前序遍历,当他猛猛搜索一直搜索到null那肯定就往上返。

if (cur == NULL) return;

  • 确定单层递归的逻辑

​ 单层递归逻辑其实就是在递归函数中要写的东西,这里我们实现的中左右,所以我们要处理的结点首先是中间节点。所以数组要放我们遍历过的元素vec.push(cur->val);什么是左呢,就是向左遍历traversal(cur->left, val);右就是遍历它的右孩子traversal(cur->right, vec);这样我们就实现了中序遍历。

综上伪代码如下:

void traversal(TreeNode* cur, vector<int>& vec)if (cur == NULL) return;//中vec.push(cur->val)//左traversal(cur->left, val)//右traversal(cur->right, vec)

写前序、中序、后序代码的原则跟我们讲的前序的顺序一致:

中序:

	//左traversal(cur->left, val)//中vec.push(cur->val)//右traversal(cur->right, vec)

后序同理。

C++代码如下

class Solution {
public:void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;vec.push_back(cur->val);    // 中traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右}vector<int> preorderTraversal(TreeNode* root) {vector<int> result;traversal(root, result);return result;}
};

二叉树的中序遍历

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左vec.push_back(cur->val);    // 中traversal(cur->right, vec); // 右
}

二叉树的后序遍历

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右vec.push_back(cur->val);    // 中
}

二叉树的迭代遍历

看完本篇大家可以使用迭代法,再重新解决如下三道leetcode上的题目:

  • 144.二叉树的前序遍历
  • 94.二叉树的中序遍历
  • 145.二叉树的后序遍历

文章链接:非递归遍历

视频链接:写出二叉树的非递归遍历很难么?(前序和后序)

写出二叉树的非递归遍历很难么?(中序)

前序遍历

​ A
/ \
B C
/ \
D E

对于以上的二叉树,遍历顺序是ABDEC。编程语言实现递归其实就是用栈来实现的,所以我们这里用迭代来模拟递归,也是用栈这种结构。理论上来讲所有递归都能用栈来模拟。

栈底[ ]栈顶 栈入作所示,先把A入栈,然后把A弹出。为什么要弹出呢,因为我们要把A放入数组里了,因为A是我们要处理的元素。A弹出之后,我们要处理A的左右孩子。然后依次把C、B入栈。此时:栈底[C, B]栈顶。本来我们要拿到B,但是先把C入栈,这是因为栈是先进后出的,这样我们就能先拿B,再拿C,实现中左右的遍历顺序。然后我们弹出B放入数组,现在数组是[A, B]。后面对于B的子树的处理同理。具体可以看上文视频。

再一个就是碰到叶子结点就不用处理它的左右孩子了。

详细代码如下:

前序遍历C++代码

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();                       // 中st.pop();result.push_back(node->val);if (node->right) st.push(node->right);           // 右(空节点不入栈)if (node->left) st.push(node->left);             // 左(空节点不入栈)}return result;}
};

右序遍历

20200808200338924

我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了

右序遍历C++代码

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();result.push_back(node->val);if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)if (node->right) st.push(node->right); // 空节点不入栈}reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了return result;}
};

中序遍历

为什么中序遍历不同

之前代码有两个重点,一个是访问结点,一个是处理结点。访问结点就是在二叉树中从根结点开始一个结点一个结点开始访问;处理结点就是结点元素保存到数组中,这个数组就是我们要输出的顺序。

如果是中序遍历,对于上文的二叉树:

​ A

/
B C
/ \
D E

我们还是要先访问根结点,但是我们先处理的却不能是根结点,中序遍历的第一个元素应该是D。这就造成了我们访问的顺序和我们处理的顺序不一样。这就是为什么我们的中序遍历是另外一套写法。

中序遍历迭代法的过程

中序遍历为:DBEAC

首先还是要用栈来记录我们遍历过的顺序,因为我们处理元素的时候其实按遍历顺序逆向输出的

我们先访问A,然后把A入栈,然后访问B把B入栈,然后是D,把D入栈。此时我们到叶子结点了(怎么知道到叶子结点了呢?因为我们再访问D的左孩子是空,所以肯定是叶子结点)。也就是因为D的左孩子为空,我们从栈取元素,就是D,D就是我们要处理的第一个元素。此时把D看成一个独立的二叉树。D是中,左右都是空,所以第一个输出的元素是D,把D加入到数组里。

然后由于D右也是空,我们就把B弹出来加入到数组。

然后B的右孩子不为空,栈记录我们遍历的元素E,然后指针还是往E的左孩子走,又是空!所以我们就把E弹出。

随后看E的右孩子,也是空!,所以我们就再从栈内弹出元素A加入到数组中。

然后就找A的右孩子C加入到数组中。然后C的左孩子为空,所以把C弹出加入数组,再看C的右孩子,也为空,理论上我们应该从栈内弹出元素,但是栈也为空了,所以我们的遍历流程就结束了。

综上,数组中的顺序为DBEAC,与答案一致

伪代码如下:

 vector<int> traversal (root){vector<int> result;stack<TreeNode*> st;Treenode* cur = root; //当前结点指向根结点while (cur != NUll || !st.empty()){if (cur != Null)	//如果当前元素不为空{st.push(cur);	//吧当前方位的元素加入到栈里 cur = cur->left; //当前结点往左走}else{cur = st.top(); st.pop();result.push_back(cur->val);cur = cur->right;}return result;   }}

中序遍历C++代码

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;TreeNode* cur = root;while (cur != NULL || !st.empty()) {if (cur != NULL) { // 指针来访问节点,访问到最底层st.push(cur); // 将访问的节点放进栈cur = cur->left;                // 左} else {cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)st.pop();result.push_back(cur->val);     // 中cur = cur->right;               // 右}}return result;}
};

二叉树的统一迭代法

主要思想就是利用一个栈来完成遍历结点和处理结点的过程。

统一风格代码如下:

中序遍历

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中if (node->right) st.push(node->right);  // 添加右节点(空节点不入栈)st.push(node);                          // 添加中节点st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。if (node->left) st.push(node->left);    // 添加左节点(空节点不入栈)} else { // 只有遇到空节点的时候,才将下一个节点放进结果集st.pop();           // 将空节点弹出node = st.top();    // 重新取出栈中元素st.pop();result.push_back(node->val); // 加入到结果集}}return result;}
};

前序遍历

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();if (node->right) st.push(node->right);  // 右if (node->left) st.push(node->left);    // 左st.push(node);                          // 中st.push(NULL);} else {st.pop();node = st.top();st.pop();result.push_back(node->val);}}return result;}
};

后序遍历

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();st.push(node);                          // 中st.push(NULL);if (node->right) st.push(node->right);  // 右if (node->left) st.push(node->left);    // 左} else {st.pop();node = st.top();st.pop();result.push_back(node->val);}}return result;}
};

这篇关于代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838474

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各