树状数组优化dp,2617. 网格图中最少访问的格子数

2024-03-23 13:12

本文主要是介绍树状数组优化dp,2617. 网格图中最少访问的格子数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、题目

1、题目描述

2、接口描述

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

给你一个下标从 0 开始的 m x n 整数矩阵 grid 。你一开始的位置在 左上角 格子 (0, 0) 。

当你在格子 (i, j) 的时候,你可以移动到以下格子之一:

  • 满足 j < k <= grid[i][j] + j 的格子 (i, k) (向右移动),或者
  • 满足 i < k <= grid[i][j] + i 的格子 (k, j) (向下移动)。

请你返回到达 右下角 格子 (m - 1, n - 1) 需要经过的最少移动格子数,如果无法到达右下角格子,请你返回 -1 。

2、接口描述

class Solution {
public:int minimumVisitedCells(vector<vector<int>>& grid) {}
};

3、原题链接

2617. 网格图中最少访问的格子数


二、解题报告

1、思路分析

定义 f[i][j] 表示从 (i,j) 到 (m−1,n−1) 经过的最少格子数。

那么可以很容易的写出状态转移方程:

f[i][j] = min(f[i][j + k], f[i + k][j]) + 1,其中k <= grid[i][j]

这个状态转移方程是O(n+ m)的,那么有n * m个状态,总体时间复杂度就是O(n*m*(n+m)),显然会爆掉

那么如何优化呢?

状态数不好优化,那么从转移方程上入手,发现这个转移方程就是获取区间最值,那么我们有很多手段,这里选择使用树状数组,因为不好写错(

我们自底向上转移,即倒序遍历来转移,这样需要每一列开一个树状数组,然后行树状数组只开一个就行,因为我们是一行一行向上遍历

2、复杂度

时间复杂度: O(mnlog(m+n))空间复杂度:O(mn)

3、代码详解

void add(int x, int k, vector<int>& tr){for(; x < tr.size(); x += (x & -x))tr[x] = min(tr[x], k);
}
int query(int x, vector<int>& tr){int res = 1e8;for(; x; x &= (x - 1))res = min(res, tr[x]);return res;
}
class Solution {
public:int minimumVisitedCells(vector<vector<int>>& g) {int m = g.size(), n = g[0].size(), f = 1e8;vector<vector<int>> tr_col(n, vector<int>(m + 1, 1e8));for(int i = m - 1; i >= 0; i--){vector<int> tr_row(n + 1, 1e8);for(int j = n - 1; j >= 0; j--){f = 1e8;if(i == m - 1 && j == n - 1) f = 1;f = min(f, 1 + min(query(min(m, i + 1 + g[i][j]), tr_col[j]), query(min(n, j + 1 + g[i][j]), tr_row)));add(j + 1, f, tr_row), add(i + 1, f, tr_col[j]);cout << f << ' ';}}return f < 1e8 ? f : -1;}
};

这篇关于树状数组优化dp,2617. 网格图中最少访问的格子数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838413

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例: