【聚类】K-Means聚类(优缺点、手肘法、轮廓系数法、检测异常点、图像压缩,含代码实战)

本文主要是介绍【聚类】K-Means聚类(优缺点、手肘法、轮廓系数法、检测异常点、图像压缩,含代码实战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,请一键三连,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

1、介绍

K-Means 是一种简单但功能强大的无监督学习算法,是一种常用的基于距离的聚类算法。K-means算法基本思想是将样本数据划分为K个类别,使得每个数据点与其所属类别的聚类中心之间的距离最小化,从而达到聚类的目的。K-Means 聚类算法可以用于客户类型划分、异常点检测和图像压缩等。

2、原理

K-Means 具体流程如下:

  1. 随机选择K个点作为初始聚类中心;
  2. 计算每个数据点与K个聚类中心的距离,并将其归到距离最近的聚类中心的类别中;
  3. 更新聚类中心的位置,将每个聚类中心的位置移动到其类别中所有点的均值位置;
  4. 重复第2和第3步,直到聚类中心不再改变或达到最大迭代次数。

3、K值选择

通常使用手肘法或者轮廓系数法确定K值。

3.1手肘法

SSE,sum of the squared errors,误差的平方和。在K-means 算法中,SSE 计算的是每类中心点与其同类成员距离的平方和。
在这里插入图片描述

基本思想:

随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自然会逐渐变小。

当k小于最佳聚类数时,k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大;

当k到达最佳聚类数时,再增加k所得到的聚合程度,回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓。

也就是说SSE和 k 的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的最佳聚类数。这也是该方法被称为手肘法的原因。

3.2轮廓系数法

轮廓系数(Silhouette Coefficient)结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果。该值处于-1~1之间,值越大,表示聚类效果越好。

在这里插入图片描述

求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数。平均轮廓系数的取值范围为[-1,1],且簇内样本的距离越近,簇间样本距离越远,平均轮廓系数越大,聚类效果越好。那么,很自然地,平均轮廓系数最大的k便是最佳聚类数。

4、优缺点

4.1优点

(1)简单直观,容易理解:K-Means算法原理比较简单,实现容易,聚类效果也不错;

(2)处理大数据集效率高:处理大数据集的时候,该算法可以保证较好的伸缩性;

(3)可解释性强:每个簇都有一个中心点,可以用来解释和描述该簇的特征。

4.2缺点

(1)对初始簇中心敏感:不同的初始簇中心可能导致不同的聚类结果;

(2)K值需要人为设定:需要预先指定聚类的簇数K,这个值的选择通常比较困难,需要基于经验或尝试不同的值来确定;

(3)对噪声和异常值敏感:噪声和异常值可能会对K-Means算法的聚类结果产生较大的影响,导致簇的中心偏移或产生不理想的簇;

(4)不适合非凸形状簇:K-Means算法假设簇的形状是凸的(或至少是圆形的),对于非凸形状或形状大小差异较大的簇,可能无法得到好的聚类效果。

5、复杂度

时间复杂度: O(tknm),其中,t 为迭代次数,k 为簇的数目,n 为样本点数,m 为样本点维度。

空间复杂度: O(m(n+k)),其中,k 为簇的数目,m 为样本点维度,n 为样本点数。

6、代码实战

6.1数据划分

# -*- coding: utf-8 -*-
"""
Created on Tue Mar 19 18:45:10 2024@author: zqq
"""from sklearn.datasets import make_blobs  
import joblib
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score# 数据, 1000个样本点,3个簇
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[2,2],[4,4],[6,6]], cluster_std=[0.2,0.4,0.5], random_state=2)# 查看原始数据
plt.figure()
plt.scatter(X[:,0], X[:,1], marker='o')
plt.show()# 手肘法, 确定K值
SSE = []
k_min = 1
k_max = 10
for k in range(k_min, k_max):print("k:", k)kmeans_model = KMeans(n_clusters=k, random_state=10)kmeans_model.fit(X)SSE.append(kmeans_model.inertia_)
# 绘图
plt.figure()
plt.plot(range(k_min, k_max), SSE, marker='x')    
plt.title('The Elbow method')
plt.xlabel('k')
plt.ylabel('SSE')
plt.show()# 轮廓系数法,确定K值
SC = []
k_min = 2  # 轮廓系数必须从2开始
k_max = 10
for k in range(k_min, k_max):print("k:", k)kmeans_model = KMeans(n_clusters=k, random_state=10)kmeans_model.fit(X)sc_score  = silhouette_score(X, kmeans_model.labels_)SC.append(sc_score)
# 绘图
plt.figure()
plt.plot(range(k_min, k_max), SC, marker='o')    
plt.title('The sihouette coefficient method')
plt.xlabel('k')
plt.ylabel('sihouette coefficient score')
plt.show() # 保存模型
kmeans_model = KMeans(n_clusters=3, random_state=10)
kmeans_model.fit(X)
joblib.dump(kmeans_model, 'kmeans_model.pkl')
y_pred = kmeans_model.predict(X)
plt.figure()
plt.scatter(X[:,0], X[:,1], c=y_pred, s=10)
plt.show()

手肘法:
在这里插入图片描述
轮廓系数法:
在这里插入图片描述
三类数据分布图:
在这里插入图片描述

6.2检测异常点

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 09:28:47 2024@author: zqq
"""from sklearn.cluster import KMeans
import numpy as np
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt# 生成模拟数据
X = np.concatenate([np.random.normal(0, 1, (100, 2)), np.random.normal(10, 1, (10, 2))])# 可视化样本
plt.figure()
x = X[:,0]
y = X[:,1]
# s散点的面积,c散点颜色
plt.scatter(x, y, s=10, c='red')
plt.show()# KMeans算法拟合
kmeans_model = KMeans(n_clusters=2, random_state=0).fit(X)# 聚类中心
centroids = kmeans_model.cluster_centers_
print("聚类中心:\n", centroids) # 每个样本到上述聚类中心的距离,欧式距离
D = cdist(X, centroids, 'euclidean')# 每个样本的最近聚类中心索引
cluster_labels = D.argmin(axis=1)# 设置一个阈值,超过这个阈值认为是离群点
threshold = 2.5# 寻找离群点
outliers = [X[i] for i, d in enumerate(D) if d[cluster_labels[i]] > threshold]# 打印离群点
print("Outliers:\n", outliers)

原始数据分布图:
在这里插入图片描述
给出的异常点数据:
在这里插入图片描述

6.3图像压缩

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 09:54:47 2024@author: zqq
"""import numpy as np  
from sklearn.cluster import KMeans  
from PIL import Image  
import matplotlib.pyplot as plt  # 加载图像并转换为numpy数组  
image = Image.open('flower.jpg').convert("RGB")image_array = np.array(image)  # 将图像数据重塑为二维数组,其中每一行是一个像素点的RGB值  
pixels = image_array.reshape(-1, 3)  # 使用K-Means算法对像素进行聚类  
n_colors = 8  # 设置颜色数量,这将影响压缩率  
kmeans = KMeans(n_clusters=n_colors)  
kmeans.fit(pixels)  # 使用K-Means聚类中心替换原始像素值  
compressed_pixels = kmeans.cluster_centers_[kmeans.labels_]  # 将压缩后的像素值重塑回原始图像的形状  
compressed_image_array = compressed_pixels.reshape(image_array.shape)  # 将压缩后的图像数组转换为图像对象  
compressed_image = Image.fromarray(np.uint8(compressed_image_array))  # 显示原始图像和压缩后的图像  
plt.figure(figsize=(10, 5))  plt.subplot(1, 2, 1)  
plt.imshow(image)  
plt.title('Original Image')  plt.subplot(1, 2, 2)  
plt.imshow(compressed_image)  
plt.title(f'Compressed Image with {n_colors} colors')  plt.show()  # 保存压缩后的图像  
compressed_image.save('compressed_image.jpg')

原始图像:

在这里插入图片描述

压缩图像:
在这里插入图片描述

参考资料

https://blog.csdn.net/m0_62110645/article/details/134148972
https://zhuanlan.zhihu.com/p/78798251
https://zhuanlan.zhihu.com/p/619922019
https://blog.csdn.net/wsgzjdbb/article/details/106931273
https://blog.51cto.com/u_15060465/4297864
https://www.cnblogs.com/SpaldingWen/p/9960991.html
https://mp.weixin.qq.com/s/FRe7A6Zo9iX7IqOpYofLYg
https://blog.csdn.net/zly_Always_be/article/details/136109128
https://blog.csdn.net/qq_34448345/article/details/127407274
https://blog.csdn.net/wfh684066/article/details/81006472
https://zhuanlan.zhihu.com/p/54045059

这篇关于【聚类】K-Means聚类(优缺点、手肘法、轮廓系数法、检测异常点、图像压缩,含代码实战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837768

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能