【聚类】K-Means聚类(优缺点、手肘法、轮廓系数法、检测异常点、图像压缩,含代码实战)

本文主要是介绍【聚类】K-Means聚类(优缺点、手肘法、轮廓系数法、检测异常点、图像压缩,含代码实战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,请一键三连,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

1、介绍

K-Means 是一种简单但功能强大的无监督学习算法,是一种常用的基于距离的聚类算法。K-means算法基本思想是将样本数据划分为K个类别,使得每个数据点与其所属类别的聚类中心之间的距离最小化,从而达到聚类的目的。K-Means 聚类算法可以用于客户类型划分、异常点检测和图像压缩等。

2、原理

K-Means 具体流程如下:

  1. 随机选择K个点作为初始聚类中心;
  2. 计算每个数据点与K个聚类中心的距离,并将其归到距离最近的聚类中心的类别中;
  3. 更新聚类中心的位置,将每个聚类中心的位置移动到其类别中所有点的均值位置;
  4. 重复第2和第3步,直到聚类中心不再改变或达到最大迭代次数。

3、K值选择

通常使用手肘法或者轮廓系数法确定K值。

3.1手肘法

SSE,sum of the squared errors,误差的平方和。在K-means 算法中,SSE 计算的是每类中心点与其同类成员距离的平方和。
在这里插入图片描述

基本思想:

随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自然会逐渐变小。

当k小于最佳聚类数时,k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大;

当k到达最佳聚类数时,再增加k所得到的聚合程度,回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓。

也就是说SSE和 k 的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的最佳聚类数。这也是该方法被称为手肘法的原因。

3.2轮廓系数法

轮廓系数(Silhouette Coefficient)结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果。该值处于-1~1之间,值越大,表示聚类效果越好。

在这里插入图片描述

求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数。平均轮廓系数的取值范围为[-1,1],且簇内样本的距离越近,簇间样本距离越远,平均轮廓系数越大,聚类效果越好。那么,很自然地,平均轮廓系数最大的k便是最佳聚类数。

4、优缺点

4.1优点

(1)简单直观,容易理解:K-Means算法原理比较简单,实现容易,聚类效果也不错;

(2)处理大数据集效率高:处理大数据集的时候,该算法可以保证较好的伸缩性;

(3)可解释性强:每个簇都有一个中心点,可以用来解释和描述该簇的特征。

4.2缺点

(1)对初始簇中心敏感:不同的初始簇中心可能导致不同的聚类结果;

(2)K值需要人为设定:需要预先指定聚类的簇数K,这个值的选择通常比较困难,需要基于经验或尝试不同的值来确定;

(3)对噪声和异常值敏感:噪声和异常值可能会对K-Means算法的聚类结果产生较大的影响,导致簇的中心偏移或产生不理想的簇;

(4)不适合非凸形状簇:K-Means算法假设簇的形状是凸的(或至少是圆形的),对于非凸形状或形状大小差异较大的簇,可能无法得到好的聚类效果。

5、复杂度

时间复杂度: O(tknm),其中,t 为迭代次数,k 为簇的数目,n 为样本点数,m 为样本点维度。

空间复杂度: O(m(n+k)),其中,k 为簇的数目,m 为样本点维度,n 为样本点数。

6、代码实战

6.1数据划分

# -*- coding: utf-8 -*-
"""
Created on Tue Mar 19 18:45:10 2024@author: zqq
"""from sklearn.datasets import make_blobs  
import joblib
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score# 数据, 1000个样本点,3个簇
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[2,2],[4,4],[6,6]], cluster_std=[0.2,0.4,0.5], random_state=2)# 查看原始数据
plt.figure()
plt.scatter(X[:,0], X[:,1], marker='o')
plt.show()# 手肘法, 确定K值
SSE = []
k_min = 1
k_max = 10
for k in range(k_min, k_max):print("k:", k)kmeans_model = KMeans(n_clusters=k, random_state=10)kmeans_model.fit(X)SSE.append(kmeans_model.inertia_)
# 绘图
plt.figure()
plt.plot(range(k_min, k_max), SSE, marker='x')    
plt.title('The Elbow method')
plt.xlabel('k')
plt.ylabel('SSE')
plt.show()# 轮廓系数法,确定K值
SC = []
k_min = 2  # 轮廓系数必须从2开始
k_max = 10
for k in range(k_min, k_max):print("k:", k)kmeans_model = KMeans(n_clusters=k, random_state=10)kmeans_model.fit(X)sc_score  = silhouette_score(X, kmeans_model.labels_)SC.append(sc_score)
# 绘图
plt.figure()
plt.plot(range(k_min, k_max), SC, marker='o')    
plt.title('The sihouette coefficient method')
plt.xlabel('k')
plt.ylabel('sihouette coefficient score')
plt.show() # 保存模型
kmeans_model = KMeans(n_clusters=3, random_state=10)
kmeans_model.fit(X)
joblib.dump(kmeans_model, 'kmeans_model.pkl')
y_pred = kmeans_model.predict(X)
plt.figure()
plt.scatter(X[:,0], X[:,1], c=y_pred, s=10)
plt.show()

手肘法:
在这里插入图片描述
轮廓系数法:
在这里插入图片描述
三类数据分布图:
在这里插入图片描述

6.2检测异常点

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 09:28:47 2024@author: zqq
"""from sklearn.cluster import KMeans
import numpy as np
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt# 生成模拟数据
X = np.concatenate([np.random.normal(0, 1, (100, 2)), np.random.normal(10, 1, (10, 2))])# 可视化样本
plt.figure()
x = X[:,0]
y = X[:,1]
# s散点的面积,c散点颜色
plt.scatter(x, y, s=10, c='red')
plt.show()# KMeans算法拟合
kmeans_model = KMeans(n_clusters=2, random_state=0).fit(X)# 聚类中心
centroids = kmeans_model.cluster_centers_
print("聚类中心:\n", centroids) # 每个样本到上述聚类中心的距离,欧式距离
D = cdist(X, centroids, 'euclidean')# 每个样本的最近聚类中心索引
cluster_labels = D.argmin(axis=1)# 设置一个阈值,超过这个阈值认为是离群点
threshold = 2.5# 寻找离群点
outliers = [X[i] for i, d in enumerate(D) if d[cluster_labels[i]] > threshold]# 打印离群点
print("Outliers:\n", outliers)

原始数据分布图:
在这里插入图片描述
给出的异常点数据:
在这里插入图片描述

6.3图像压缩

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 09:54:47 2024@author: zqq
"""import numpy as np  
from sklearn.cluster import KMeans  
from PIL import Image  
import matplotlib.pyplot as plt  # 加载图像并转换为numpy数组  
image = Image.open('flower.jpg').convert("RGB")image_array = np.array(image)  # 将图像数据重塑为二维数组,其中每一行是一个像素点的RGB值  
pixels = image_array.reshape(-1, 3)  # 使用K-Means算法对像素进行聚类  
n_colors = 8  # 设置颜色数量,这将影响压缩率  
kmeans = KMeans(n_clusters=n_colors)  
kmeans.fit(pixels)  # 使用K-Means聚类中心替换原始像素值  
compressed_pixels = kmeans.cluster_centers_[kmeans.labels_]  # 将压缩后的像素值重塑回原始图像的形状  
compressed_image_array = compressed_pixels.reshape(image_array.shape)  # 将压缩后的图像数组转换为图像对象  
compressed_image = Image.fromarray(np.uint8(compressed_image_array))  # 显示原始图像和压缩后的图像  
plt.figure(figsize=(10, 5))  plt.subplot(1, 2, 1)  
plt.imshow(image)  
plt.title('Original Image')  plt.subplot(1, 2, 2)  
plt.imshow(compressed_image)  
plt.title(f'Compressed Image with {n_colors} colors')  plt.show()  # 保存压缩后的图像  
compressed_image.save('compressed_image.jpg')

原始图像:

在这里插入图片描述

压缩图像:
在这里插入图片描述

参考资料

https://blog.csdn.net/m0_62110645/article/details/134148972
https://zhuanlan.zhihu.com/p/78798251
https://zhuanlan.zhihu.com/p/619922019
https://blog.csdn.net/wsgzjdbb/article/details/106931273
https://blog.51cto.com/u_15060465/4297864
https://www.cnblogs.com/SpaldingWen/p/9960991.html
https://mp.weixin.qq.com/s/FRe7A6Zo9iX7IqOpYofLYg
https://blog.csdn.net/zly_Always_be/article/details/136109128
https://blog.csdn.net/qq_34448345/article/details/127407274
https://blog.csdn.net/wfh684066/article/details/81006472
https://zhuanlan.zhihu.com/p/54045059

这篇关于【聚类】K-Means聚类(优缺点、手肘法、轮廓系数法、检测异常点、图像压缩,含代码实战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837768

相关文章

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景