FMR-NET:用于弱光图像增强的快速多尺度残差网络(已更新三类预训练模型)

本文主要是介绍FMR-NET:用于弱光图像增强的快速多尺度残差网络(已更新三类预训练模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前上传的代码存在一定问题,目前已重新更新并上传了三类新的预训练模型供大家使用

paper     Github     CSDN下载

动机:

不按摘要来形式来写,本文的动机在于一个,减少模型参数量,加快运行速度,以及取得还不错的效果。因此,就存在两个方面的技术问题:第一,如何降低参数量;第二,如何降低内存访问的次数(这个观点从FasterNET就可以看出,很多文章也在提这个点);第三,如何取得还不错的增强效果。

因此,我自己思考的是两个:第一个是输入通道的通道数量应该小(特征冗余很多;相较于FasterNet的局部卷积;直接减少通道感觉也行);第二个在于特征提取的能力必须很强(1.基本会使用大量残差,但是残差其实是加大了内存访问次数的,因此也不能太多;2.必须加入多尺度的环节,但是许多的多尺度卷积会增大整个网络的复杂度);第三个是推理速度的问题(合理的残差结构和通道叠加,拓扑推理速度会很快)

所以,我们提出了如下的网络结构:

网络结构

对于整个网络而言,最关键的技术,在于MRB这个模块的构建。因此我们后面做了消融实验去验证它。首先,这个模块有两类思想:1.特征叠加的思想。单一通道的并联操作,在拓扑推理中运行速度是按照推理计算最大的卷积核为标准的,因此可以并联许多不同类型的核;2.双重的残差设计。具体可以看一下原文。

为了尽可能地轻量化,我们做了一个非常简略的通道注意力模块,同时,在MMFF-NET这篇文章中,虽然利用特征点成作增亮效果更好;但是为了更加迅速,Zero-DCE的操作蚕食FLOPs最小的。因此我们还是使用的这类策略。

整个网络非常简单,非常方便训练和改造,也非常方便大家部署+即插即用。

展示效果:

我们全新的代码中,提供了3类全新的预训练模型。分别是使用LOL,FiveK(艺术家C)和LOL+FiveK,三个版本。具体效果如下:

原图如下:

三类预训练的效果其实都还不错。主要看您针对于什么模型。如果您需要自己训练模型,直接使用自己的有监督学习数据集即可。

对比实验

实验部分我们做了两类实验。一个是MRB的消融实验。这里的消融实验我感觉更多是做的模块性能的一个对比试验。在这里我们比较了不同常用多尺度模块的性能,并且使用PSNR/SSIM比较了谁更牛逼。(肯定是我们的模块最好了=_=)同时我们还和其他算法进行了比较。

欢迎引用我的算法+代码:

感谢各位的支持。

Chen, Yuhan, et al. "FMR-Net: a fast multi-scale residual network for low-light image enhancement." Multimedia Systems 30.2 (2024): 73.

这篇关于FMR-NET:用于弱光图像增强的快速多尺度残差网络(已更新三类预训练模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835478

相关文章

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl