【2023电赛】对于E题(运动目标控制)红色激光的简要回顾(四千字逐题分析,逐题相关代码)

本文主要是介绍【2023电赛】对于E题(运动目标控制)红色激光的简要回顾(四千字逐题分析,逐题相关代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       

不知不觉四天三夜已经过去了

        虽然成绩不怎么样,但我觉得还是要留一些有用的文字给像我们一样   “没有人带路、没有老师指导、甚至是三个大一的团队”   ,毕竟我们也是从头摸过来的,吃过不少亏。对于我们来说,互联网就是我们的老师,所以比赛结束后,思来想去我也才打算写这个文章来回顾一下比赛内容,也算是一种回馈了。同时也希望和我们一样“三无”的同学,看完之后能有点收获。

        

        首先是看题目,我们在看到题目的时候也是觉得非常简单,觉得两天就能肝的差不多,然后搓了一天,和其他团队一样,死在了舵机精度上。解决方案如下:

                     1、购买高精度舵机(然而我们在哈尔滨,压根做不到开赛前完成到货+调试)

                     2、用差不多的舵机+代码硬上(我们最后是选择了这个方案)

                     3、拆电机改齿轮缩短有效范围来提高精度(这个其实是赛后才知道的)

        因此最后我们还是选择了第二点,所以我们的代码也是基于你的舵机一般(但不至于sg90那么烂)用openmv控制的。

        对于第一问和第二问,我不清楚如果选择树莓派或者jetson之类的高性能开发版+高清摄像头能不能有效识别铅笔印,我们手中视觉能用的目前只有openmv。我这边提供openmv的代码,首先可以用python的random函数还有python的pyb库当中的舵机驱动功能来提供一个随机的角度来完成第一项的初始位置到复位的过程。

import pyb,time #需要用的模块
pan = pyb.Servo(1)
tilt = pyb.Servo(2)   #定义两个电机
#随机角度函数
def random_angle():pan.angle(random.randint(-90,90),1000)tilt.angle(random.randint(-90,90),1000)

         我们要知道,比赛前是会有20分钟的调试的(不让带电子设备,只能人工操作,也就是不能改代码),因此我们一二问直接写死!

        我们设置按钮让他到左上角和中心,比赛前距离定死1米,然后比赛场地手动控制设备朝向对准左上角和中心 就可以了!!!我们放出其中回中的按钮,左上同理

from pyb import Pin
pin1 = Pin('P1', Pin.IN, Pin.PULL_UP) #p1作为复位按钮
def servoReset():spe_servoCtrl(-28,-21,1000) #写死!!!!!!!time.sleep(2)
##按键控制
while(True):pin1复位 = pin1.value() #读取按钮是否被触发if (pin1复位 == 0):  #按钮控制!servoReset()'''
注意: 建议给按钮的杜邦线之间串联一个小电阻(几十欧几百欧都行),再串联一个瓷片电容,防止损坏单片机引脚和防止物理抖动引起多次触发!!!
'''

         对于三四题,这里就要用到视觉相关的了,首先我们要确定阈值才能够识别颜色,我们要确定目前要识别的主要是黑色的矩形靶纸和红色的激光,阈值需要你们利用openmv自带的阈值分析自行设置。同时你也需要通过简单的计算获得红色激光的中心,同时因为openmv最多也只能带的动QVGA,为了减少只标记四个矩形左上角所带来的风险,我们也要同时求出边框各个角两条外侧和内测中心的像素点位置,这里我们通过简单易懂的代码来给大家解释:

#全局变量
矩形左上角 = [0,0]
矩形左下角 = [0,0]
矩形右上角 = [0,0]
矩形右下角 = [0,0]
激光 = [0,0]
边缘优化是否完成 = 'No'
'''
开局进行25次扫描,因为题目二三题有说,启动的都是“运动目标控制系统”
我们只需要根据 “矩形优化是否完成” 就能知道是做第二题还是第三题了
缺点是二三题之间需要给机器重新上电来扫描是否有标靶
'''
while(wt < 25):print('进入检测方框模式')img = sensor.snapshot()img.lens_corr(1.8) #消除鱼眼畸变,如果没有鱼眼畸变的可以去掉for r in img.find_rects(threshold = 10000):#这里需要给矩形大小进行限制,否则会识别出各种怪东西,需要灵活调整if r.w() > 70 and r.h() > 40 and r.w()<100 and r.h()<70: # 在屏幕上框出矩形img.draw_rectangle(r.rect(), color = (255, 0, 0), scale = 4)# 获取矩形角点位置矩形左上角 = [r.x() , r.y()]矩形左下角 = [r.x() , r.y()+r.h()]矩形右上角 = [r.x()+r.w(), r.y()]  矩形右下角 = [r.x()+r.w(),r.y()+r.h()]if(矩形左上角[0]!=0 and 矩形左上角[1]!=0):wt = 25better()边缘优化是否完成 = 'Yes'print('边缘优化 成功')got = 0else:wt = wt+1#实时
while(True):clock.tick()img = sensor.snapshot()img.lens_corr(1.8)img.median(1, percentile=0.85) #滤波#实时获得激光坐标for b in img.find_blobs(red_td,pixels_threshold=2, area_threshold=2, merge=True,invert = 0,roi = roi):激光 = [(b.x()+b.w()+b.x())/2, (b.y()+b.h()+b.y())/2] #简单的像素块取中心

 标靶四角优化如下, 原理非常简单:


#全局化变量
矩形左上角优化=[0,0]
矩形左下角优化=[0,0]
矩形右上角优化=[0,0]
矩形右下角优化=[0,0]#处理矩形四个角的函数
def better():for blk in img.find_blobs(blk_td,pixels_threshold=2, area_threshold=2, merge=True,invert = 0,roi = (矩形左上角[0]-7,矩形左上角[1]-7,14,14)):矩形左上角优化 = [(blk.x()+blk.w()+blk.x())/2, (blk.y()+blk.h()+blk.y())/2]for blk in img.find_blobs(blk_td,pixels_threshold=2, area_threshold=2, merge=True,invert = 0,roi = (矩形右上角[0]-7,矩形右上角[1]-7,14,14)):矩形右上角优化 = [(blk.x()+blk.w()+blk.x())/2, (blk.y()+blk.h()+blk.y())/2]for blk in img.find_blobs(blk_td,pixels_threshold=2, area_threshold=2, merge=True,invert = 0,roi = (矩形右下角[0]-7,矩形右下角[1]-7,14,14)):矩形右下角优化 = [(blk.x()+blk.w()+blk.x())/2, (blk.y()+blk.h()+blk.y())/2]for blk in img.find_blobs(blk_td,pixels_threshold=2, area_threshold=2, merge=True,invert = 0,roi = (矩形左下角[0]-7,矩形左下角[1]-7,14,14)):矩形左下角优化 = [(blk.x()+blk.w()+blk.x())/2, (blk.y()+blk.h()+blk.y())/2]

        其实他的原理易懂,我们不需要代码,请看图:


 然后就是激动人心的巡线了,我们首先需要导入pid库,用的是openmv官方例程的 ---> pid库下载

        巡线代码如下(部分,因为我们舵机精度不够,四个角的pid都是单独来回设置的,全发出来会很长)

pan_pid = PID(p=0.05, i=0.007,d = 0.001) #设置底盘和上部分别的pid,需要不断调试
tilt_pid = PID(p=0.03, i=0.006,d = 0.003) 
pan_error = 激光[0]-(矩形左上角优化[0])
tilt_error = 激光[1]-(矩形左上角优化[1])
pan_output=pan_pid.get_pid(pan_error,1)
tilt_output=tilt_pid.get_pid(tilt_error,1)
pan_output = limt(pan_output,0.5)
tilt_output = limt(tilt_output,0.5)
panangle=panangle+pan_output
tiltangle=tiltangle-tilt_output#根据红点状况进行调整
if(abs(pan_error)>2):pan.angle(panangle,5)time.sleep_ms(5)
if(abs(tilt_error)>2):tilt.angle(tiltangle,5)time.sleep_ms(5)
if(当前状态 == 0 and abs(pan_error)<=2 and abs(tilt_error)<=2 ):time.sleep(1)got = 1print('已到达左上角 → 右上角')

最后也希望大家有所收获吧,我也是编程小白,代码也不是很守规范,但也希望许多和我们一样的”三无“团队能吸收一下经验吧哈哈,算是反哺互联网了,希望能帮到您。

这篇关于【2023电赛】对于E题(运动目标控制)红色激光的简要回顾(四千字逐题分析,逐题相关代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835426

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析