炼丹!训练 stable diffusion 来生成LoRA定制模型

2024-03-22 06:20

本文主要是介绍炼丹!训练 stable diffusion 来生成LoRA定制模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI作画

LoRA,英文全称Low-Rank Adaptation of Large Language Models,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术。 比如,GPT-3有1750亿参数,为了让它能干特定领域的活儿,需要做微调,但是如果直接对GPT-3做微调,成本太高太麻烦了。

LoRA的做法是,冻结预训练好的模型权重参数,然后在每个Transformer(Transforme就是GPT的那个T)块里注入可训练的层,由于不需要对模型的权重参数重新计算梯度,所以,大大减少了需要训练的计算量。 研究发现,LoRA的微调质量与全模型微调相当,要做个比喻的话,就好比是大模型的一个小模型,或者说是一个插件。

根据显卡性能不同,训练一般需要一个到几个小时的时间,这个过程俗称炼丹!

主要步骤有以下这些,话不多说,开整!

1. 显卡

首先是要有显卡了,推荐8G显存以上的N卡。然后就是装GPU驱动,可以参考我以前文章centos中docker使用GPU

2. 训练环境

自从有了docker,我就不喜欢在宿主机上装一堆开发环境了,所以这次就直接使用stable-diffusion-webui带webui打包好的镜像,也方便训练完成以后测试。推荐一下 kestr3l/stable-diffusion-webui 这个镜像,是基于 nvidia/cuda:11.7.1-devel-ubuntu22.04 镜像,本人亲自测试过,可用的。 附一个我用的 docker-compose.yml 文件

version: "3"
services: sd-webui:image: kestr3l/stable-diffusion-webui:1.1.0container_name: sd-webuirestart: alwaysports:- "7860:7860"- "7861:7861"ulimits:memlock: -1stack: 67108864shm_size: 4Gdeploy:resources:limits:cpus: "8.00"memory: 16Greservations:devices:- capabilities: [gpu]volumes:# 这里主要是方便映射下载的模型文件- ./models:/home/user/stable-diffusion-webui/models:cached# 修改容器的默认启动脚本,方便我们手动控制- ./entrypoint-debug.sh:/usr/local/bin/entrypoint.sh:cached

entrypoint-debug.sh文件内容:

#! /bin/sh
python3

可以去 civitai 下载 stable diffusion 的模型,放到宿主机的 ./models/Stable-diffusion 目录下面,也可以去下载一些LoRA模型丢在./models/Lora 目录下。

模型准备完毕了就可以跑个 stable diffusion 图形化界面试试看, 执行./webui.sh -f --listen 命令,启动之前会下载安装很多依赖包,国内环境不太顺,可以上代理安装。

如果输出以下内容,则表示安装成功:

root@cebe51b82933:/home/user/stable-diffusion-webui# ./webui.sh -f --listen################################################################
Install script for stable-diffusion + Web UI
Tested on Debian 11 (Bullseye)
################################################################################################################################
Running on root user
################################################################################################################################
Repo already cloned, using it as install directory
################################################################################################################################
Create and activate python venv
################################################################################################################################
Launching launch.py...
################################################################
./webui.sh: line 168: lspci: command not found
Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]
Commit hash: <none>
Installing requirements for Web UI
Launching Web UI with arguments: --listen
No module 'xformers'. Proceeding without it.
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
Loading weights [fc2511737a] from /home/user/stable-diffusion-webui/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors
Applying cross attention optimization (Doggettx).
Textual inversion embeddings loaded(0): 
Model loaded in 16.0s (0.8s create model, 14.9s load weights).
Running on local URL:  http://0.0.0.0:7860To create a public link, set `share=True` in `launch()`.

打开浏览器访问:http://127.0.0.1:7860 或者 http://内网ip:7860 就可以AI绘画了 AI作画

AI美女

AI美女

不得不说 chilloutmix_NiPrunedFp32Fix 模型生成的图片是针不戳😍!

3. 安装训练图形化界面

为了降低训练门槛,这里选用的是基于Gradio做的一个WebGui图形化界面,该项目在GitHub上叫Kohya’s GUI。

# 下载项目
git clone https://github.com/bmaltais/kohya_ss.git
# 执行安装脚本
cd kohya_ss
bash ubuntu_setup.sh

由于是在docker内部执行,ubuntu_setup.sh 脚本可能有问题,所以我一般是直接进入容器,手动单条执行

apt install python3-tk
python3 -m venv venv
source venv/bin/activate
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --use-pep517 --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/linux/xformers-0.0.14.dev0-cp310-cp310-linux_x86_64.whl

执行accelerate config命令,生成对应配置文件,选项如下:

(venv) root@cebe51b82933:/home/user/kohya_ss# accelerate config
2023-03-13 06:45:22.678222: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-03-13 06:45:22.922383: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2023-03-13 06:45:23.593040: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-03-13 06:45:23.593158: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-03-13 06:45:23.593177: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
--------------------------------------------------------------------------------------------------In which compute environment are you running?
This machine                                                                                      
--------------------------------------------------------------------------------------------------Which type of machine are you using?                                                              
No distributed training                                                                           
Do you want to run your training on CPU only (even if a GPU is available)? [yes/NO]:NO            
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO                                 
Do you want to use DeepSpeed? [yes/NO]: NO                                                        
What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:all                                                                                                
--------------------------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?
fp16                                                                                              
accelerate configuration saved at /root/.cache/huggingface/accelerate/default_config.yaml
4. 启动训练图形化界面

执行命令python kohya_gui.py --listen 0.0.0.0 --server_port 7861 --inbrowser --share

(venv) root@cebe51b82933:/home/user/kohya_ss# python kohya_gui.py --listen 0.0.0.0 --server_port 7861 --inbrowser --share                                                                         
Load CSS...
Running on local URL:  http://0.0.0.0:7861
Running on public URL: https://49257631b1b39d3db5.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces

这时候浏览器就可以打开http://127.0.0.1:7861 端口了,界面如下: 训练web界面

5. 准备要训练的图片

找到你要用来训练的一些图片放到统一文件夹下,建议15张以上,我这里就用汤唯的照片: 原始图片文件夹

然后打开stable diffusion webui来预处理这些图片: 预处理图片

点击Preprocess按钮,等待处理完成。顺利的的话会在dest文件夹下生成512*512的图片,和描述词文件 image.png

6. 开始训练

我们去训练的界面,需要设置一堆参数,直接看图吧

基础模型选择

文件夹选择

训练参数配置

建议新建立文件夹,比如我这里叫train_lora,在文件夹里创建image、log和model三个文件夹,其中,image里存放的图片就是预处理生成的图片。 image里的预处理图片不能直接放在里面,需要在里面创建一个文件夹,文件夹的命名非常有讲究。 已知,LoRa的训练需要至少1500步,而每张图片至少需要训练100步。 如果我们有15张或者15张以上张图片,文件夹就需要写上100_Hunzi。 如果训练的图片不够15张,比如10张,就需要改为150_Hunzi,以此类推。 这部分很重要,一定要算清楚。 当然,这也正是LoRa强大的地方,用这么少的图片即可完成训练。

点击训练按钮,开始炼丹: 炼丹

生成的丹就在train_lora/model文件夹下面: image.png

最终使用这个丹的生成的图片效果展示: image.png

image.png

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

这篇关于炼丹!训练 stable diffusion 来生成LoRA定制模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834709

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre