Qualcomm AI Hub-示例(二)模型性能分析

2024-03-22 02:28

本文主要是介绍Qualcomm AI Hub-示例(二)模型性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章介绍

模型性能分析(Profiling)

当模型尝试部署到设备时,会面临许多重要问题:

  • 目标硬件的推理延迟是多少?
  • 该模型是否符合一定的内存预算?
  • 模型能够利用神经处理单元吗?

通过在云端的物理设备运行模型完成性能分析,能够解答这些疑问。

编译模型

Qualcomm AI Hub支持分析已编译好的模型。在本例中,我们优化并评测了先前使用submit_compile_job()编译的模型。请注意,我们是如何利用compile_job使用get_target_model()的方法编译的模型。

import qai_hub as hub

# Profile the previously compiled model

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23"),

)

assert isinstance(profile_job, hub.ProfileJob)

返回值是ProfileJob的一个实例。要查看所有任务的列表,请转到/jobs/。

分析PyTorch模型性能

此示例需要PyTorch,可以按如下方式进行安装。

pip3 install "qai-hub[torch]"

在本例中,我们使用Qualcomm AI Hub优化和评测PyTorch模型。

from typing import List, Tuple

import torch

import qai_hub as hub

class SimpleNet(torch.nn.Module):

    def __init__(self):

        super().__init__()

        self.linear = torch.nn.Linear(5, 2)

    def forward(self, x):

        return self.linear(x)

input_shapes: List[Tuple[int, ...]] = [(3, 5)]

torch_model = SimpleNet()

# Trace the model using random inputs

torch_inputs = tuple(torch.randn(shape) for shape in input_shapes)

pt_model = torch.jit.trace(torch_model, torch_inputs)

# Submit compile job

compile_job = hub.submit_compile_job(

    model=pt_model,

    device=hub.Device("Samsung Galaxy S23 Ultra"),

    input_specs=dict(x=input_shapes[0]),

)

assert isinstance(compile_job, hub.CompileJob)

# Submit profile job using results form compile job

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

assert isinstance(profile_job, hub.ProfileJob)

有关上传、编译和提交任务时选项的更多信息,请参考upload_model(), submit_compile_job() 和submit_profile_job().

分析TorchScript模型性能

如果您已经保存了traced或脚本化的torch模型(使用torch.jit.save保存),则可以直接提交。我们将以mobilenet_v2.pt为例。与前面的示例类似,只有在将TorchScript模型编译到合适的目标之后,才能对其进行概要评测。

import qai_hub as hub

# Compile previously saved torchscript model

compile_job = hub.submit_compile_job(

    model="mobilenet_v2.pt",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

    input_specs=dict(image=(1, 3, 224, 224)),

)

assert isinstance(compile_job, hub.CompileJob)

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

assert isinstance(profile_job, hub.ProfileJob)

分析ONNX模型性能

Qualcomm AI Hub还支持ONNX。与前面的示例类似,只有在ONNX模型编译到合适的目标之后,才能对其进行评测。我们将以 mobilenet_v2.onnx为例。

import qai_hub as hub

compile_job = hub.submit_compile_job(

    model="mobilenet_v2.onnx",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

assert isinstance(compile_job, hub.CompileJob)

profile_job = hub.submit_profile_job(

    model=compile_job.get_target_model(),

    device=hub.Device("Samsung Galaxy S23"),

)

assert isinstance(profile_job, hub.ProfileJob)

分析TensorFlow Lite模型性能

Qualcomm AI Hub还支持以.tflite格式对模型Profiling。我们将使用SqueezeNet10 model。

import qai_hub as hub

# Profile TensorFlow Lite model (from file)

profile_job = hub.submit_profile_job(

    model="SqueezeNet10.tflite",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

)

在多个设备上分析模型

通常,对多个设备的性能进行建模是很重要的。在本例中,我们介绍了最近的Snapdragon®8 Gen 1和Snapdragon™8 Gen 2设备,以获得良好的测试覆盖率。我们重用TensorFlow Lite示例中的SqueezeNet model,但这次我们在两个设备上对其进行了评测。

import qai_hub as hub

devices = [

    hub.Device("Samsung Galaxy S23 Ultra"),  # Snapdragon 8 Gen 2

    hub.Device("Samsung Galaxy S22 Ultra 5G"),  # Snapdragon 8 Gen 1

]

jobs = hub.submit_profile_job(model="SqueezeNet10.tflite", device=devices)

为每个设备创建一个单独的评测任务。

上传模型以进行评测

可以在不提交评测任务的情况下上传模型(例如SqueezeNet10.tflite)。

import qai_hub as hub

hub_model = hub.upload_model("SqueezeNet10.tflite")

print(hub_model)

现在,您可以使用上传的模型的model_id来运行评测任务。

import qai_hub as hub

# Retrieve model using ID

hub_model = hub.get_model("mabc123")

# Submit job

profile_job = hub.submit_profile_job(

            model=hub_model,

            device=hub.Device("Samsung Galaxy S23 Ultra"),

            input_shapes=dict(x=(1, 3, 224, 224)),

)

分析已编译好的模型

我们可以重用以前作业中的模型来启动新的评测任务(例如,在不同的设备上)。这样可以避免多次上传同一个模型。

import qai_hub as hub

# Get the model from the profile job

profile_job = hub.get_job("jabc123")

hub_model = profile_job.model

# Run the model from the job

new_profile_job = hub.submit_profile_job(

    model=hub_model,

    device=hub.Device("Samsung Galaxy S22 Ultra 5G"),

)

作者:高通工程师,戴忠忠(Zhongzhong Dai)

这篇关于Qualcomm AI Hub-示例(二)模型性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834338

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了