基于Diffusion Model的数据增强方法应用——毕业设计 其四

2024-03-21 16:10

本文主要是介绍基于Diffusion Model的数据增强方法应用——毕业设计 其四,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 题目简介
  • 2 前言
  • 3 scheduler
    • 3.1 DDIM
      • 3.1.1 实际运行测试
    • 3.2 PNDM
      • 3.2.1 实际运行测试
  • 4.回到img2img
  • 5.总结

1 题目简介

笔者个人的毕业设计课题如下:

简介:使用预训练的Diffusion Model图像生成模型生成图像,将这些生成的图像作为扩充训练集加入到2D目标检测器、2D图像分类器的训练过程。深度学习是数据驱动的,随着数据量的扩充,能够提高检测器、分类器的鲁棒性、准确性。
建议的baseline:
分类:ResNet
检测:YOLO

可以看到,给的题目难度还是比较轻松的;本次毕设的全过程会以周为单位采用博客的形式记录下来。

2 前言

在完成上周的内容后,本周的内容将会主要聚焦于以下两点
其一,学习和分析不同scheduler对扩散模型本身带来的影响,本篇博客主要聚焦于PNDM 和 DDIM 两者上。
其二,将上周还没来得及尝试的img2img,也即图片转图片的模式进行探索。

3 scheduler

scheduler不是optimizer的,而是负责整个Diffusion model的forward和backward传播的,它的主要功能是在根据设定好的数学规则和timestep的数量,在训练和推理阶段,处理模型的输出结果。一般的scheduler主要实现两个功能函数:add noise和step。scheduler 有很多种实现方式,除了著名的 DDPM 和 DDIM 以外,还有若干其它备选 schedulers,包括 Euler 和 PNDM 等等。
在这里插入图片描述
也就是上图红圈部分

同时附上论文下载地址:https://arxiv.org/abs/2112.10752
本篇发表在CVPR2022上

3.1 DDIM

DDIM发表在ICRL2021上,是DDPMR重要的改进之一,能显著提高DDPM的样本质星、减少采样时间,并且已经被广泛应用到现在的Diffusion Models上。

同样,这里先附上论文下载地址:https://arxiv.org/abs/2010.02502

DDPM是基于Markovian扩散过程的模型,虽然在生成模型上取得了不错的效果,但是同时也存在一个大缺点,就是由于在重建生成阶段是需要一步步进行,步数通常为2000,导致推理时间非常长,需要多次迭代才能产生高质量的生成样本。
在这里插入图片描述

上图的公式中已经给出了本算法的核心内容,包括注释部分我也一起从论文中截出来了,其中公式主要分为三个部分,第一个部分是在第步预测的,即在预测的;第二部分是基于采样的噪声;第三部分是加上一个随机的噪声扰动。从上面的公式可以得到当,时,也就是说不是固定的t和t-1的关系,可以从任意的推理得到。区别于DDPM中只能一步步进行逆重建,DDIM可以重建至任意步,于是可以加速重建过程。比如,在t=2000时,对于DDPM模型必须得计算2000次,然而对于DDIM模型来说,可以每100步做一次计算,只用计算20次就够了,加速了100倍,当然重建的图片也会相应损失质量。
在这里插入图片描述
原论文中一样做了步数和噪声程度的实验,图标的说明中提到,n=0.0和=1.0时代表的是第t步的添加的随机噪声为0或是1,0指的就是DDIM模型;反之当为1时,就是DDPM模型,这也说明了DDIM模型就是一个隐式概率模型,也就是其后会推导出一个确定的结果,在语义上基本不会有区别,反之由于DDPM模型需要加入了随机的噪声,所以最后的结果会具有随机性。
在这里插入图片描述
同样作者也在2080ti的环境上做了不同stpes所需要的时长
在这里插入图片描述
如作者在下面说明的那样,steps的量级越大,人眼能直观看到的细节信息也更清楚

3.1.1 实际运行测试

在差不多了解了上面的理论知识以后,我们可以回到实验本身,关于模型接口使用的文档,可以看下面这条链接

https://huggingface.co/docs/diffusers/using-diffusers/schedulers#load-pipeline

在这里插入图片描述
可以看到除了DDIM和PNDM以外,还有很多别的Scheduler可以供选择

接下来回到实验部分,由于上次已经展示过怎么跑模型,这里就不做赘述了,直接展示结果

注意,输入的语句是【knight in the forest】 也就是森林中的骑士
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 PNDM

同样的,先把论文的地址放在这:https://arxiv.org/abs/2202.09778

Pseudo Numerical Methods for Diffusion Models on Manifolds同样是发表在ICLR上的论文,只是发表时间是2022

PNDM则将工作聚焦于一个新的问题,去噪扩散概率模型(DDPM)可以生成高质量的样本,如图像和音频样本。然而,DDPM需要数百到数千次迭代才能产生最终样本。几个先前的工作已经通过调整方差表(例如,改进的去噪扩散概率模型)或去噪方程(例如,去噪扩散隐式模型(DDIM))成功地加速了DDPM。然而,这些加速方法不能保持样本的质量,甚至在高加速率下引入新的噪声,这限制了它们的实用性。为了在保持样本质量的同时加快推理过程,PNDM提出了在DDPM应被视为流形上的微分方程的求解。
具体来说,本篇工作找出了如何求解流形上的微分方程,并表明DDIM是伪数值方法的简单例子。工作中将几种经典的数值方法改为相应的伪数值方法,并发现伪线性多步方法在大多数情况下是最佳的。根据论文中的实验,通过在Cifar10、CelebA和LSUN上直接使用预训练的模型,PNDM仅用50步就能生成更高质量的合成图像,而1000步DDIM(20倍加速),显著优于250步的DDIM(FID约0.4),并且在不同的方差调度上具有良好的泛化能力。
在这里插入图片描述
如图展示了分别使用5、10、20、50和100steps时使用DDIM、经典数值方法和PNDM生成结果。
在这里插入图片描述
与DDIM不同的时,PNDM中将几种经典的数值方法改为相应的伪数值方法,其数学的公式正如上图所示。
在这里插入图片描述
同样,本篇一样做了如上图所示的实验这里使用RTX3090上的50步512批量实验来测试计算成本,列时间是以秒为单位的每步平均计算成本。

3.2.1 实际运行测试

关于如何选择模型,上面的3.1.1部分已经有过说明,这里就不重复了

直接把和刚才一样的关键词【knight in the forest】丢入
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.回到img2img

上周的博客中有提到,因为上次做到最后已经是接近午夜了,所以匆匆忙忙跑了一下txt2img就结束了

本周会继续进行上次没有完成的部分,在img2img上进行尝试

首先看看官方给出的参数说明
在这里插入图片描述
依照给的说明输入参数就好
这里仅是为了实验,传入图片为摩托
在这里插入图片描述

python scripts/img2img.py --prompt "motorcycle" --init-img img/4.jpg --strength 0.8

输入如上代码
这里提一句,strength参数代表的是添加到输入图像的噪声量。 接近 1.0 的值允许很多变化,但也会产生与输入在语义上不一致的图像
第一次报错如下
在这里插入图片描述
本来以为会有自动的resize,结果没有
所以直接去图片目录手动resize就好
在这里插入图片描述
这里是git上关于图片大小的问题,这里就重设成512*512
在这里插入图片描述
修改后成功运行无报错
在这里插入图片描述
这里仅为了实验,以这张图片为例,分别测试strength为0.4和0.8时各两张的结果
在这里插入图片描述
经过resize原图的尺寸稍微有点变形,反正只是测试无伤大雅

strength0.8的结果
在这里插入图片描述

strength0.4的结果
在这里插入图片描述

5.总结

本周本来计划的还有做一个简单的应用程序或者APP等,可以输入程序所需的输入参赛,然后显示结果;但是这部分内容由于笔者最近疲于准备春招的面试,所以暂时还未完成;如果可以的话会尽量在后续补完。

这篇关于基于Diffusion Model的数据增强方法应用——毕业设计 其四的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833144

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in