使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程

2024-03-20 16:30

本文主要是介绍使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居

       KNN算法具体步骤:

(1)计算已知类别数据集中的点与当前点之间的距离;

(2)按照距离递增次序排序;

(3)选取与当前点距离最小的K个点;

(4)确定前K个点所在类别的出现频率;

(5)返回前K个点出现频率最高的类别作为当前点的预测分类。

       在训练分类器时使用交叉验证,其基本思想是将原始数据进行分组,一部分作为训练集,另一部分作为验证集,首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型,以此来作为评价分类器的性能指标。

       常做K折交叉验证,将数据集分成K份,轮流将其中K-1份做训练,1份做验证,多次的结果的均值作为对算法精度的估计,以求更精确一点。

       距离度量是指算法使用样本间的距离作为样本之间的相似性指标,常用欧氏距离或曼哈顿距离。

       需要用到的第三方库有:pandas、sklearn

       具体实现的步骤有:数据加载、数据预处理(删除重复数据、错误数据、填补空缺值、数据分割、标准化处理)、模型训练(构建模型、模型训练、参数调优)

       在编写代码过程中需要注意的是在读入需要预测的数据之后,也要将其与之前的训练数据一样的标准化。

       可以看一下别人用KNN是怎么做的:

KNN算法——kd-tree、KNN莺尾花分类sklearn实现实例_sklearn kdtree_企鹅家的北极熊的博客-CSDN博客

sklearn实现KNN分类算法_使用sklearn中的knn算法进行分类_睿科知识云的博客-CSDN博客
【机器学习】KNN算法实战项目二:水果分类_如何使用knn实现二分类_百木从森的博客-CSDN博客
SVM即支持向量机(Support Vector Machines
       基于统计学习理论,强调结构风险最小化。其基本思想是:对于一个给定有限数量训练样本的学习任务,通过在原空间或经投影后的高维空间中构造最优分离超平面,将给定的两类训练样本分开,构造分离超平面的依据是 两类样本对分离超平面的最小距离最大化。

       寻找最优的超平面和支持向量时,可以通过非线性映射将原数据变换到更高维空间,在新的高维空间中实现线性可分。这种非线性映射可以通过核函数来实现,常用的核函数包括: 高斯核函数、多项式核函数、S形*核函数。

       需要用到的第三方库有:pandas、sklearn-svm

       具体实现的步骤有:数据加载、数据预处理(删除重复数据、错误数据、填补空缺值、数据分割、标准化处理)、模型训练(创建支持向量机、选择核函数、用fit()方法训练、用score()方法考察训练效果、用predict()方法进行预测)

       编程中,KNN和SVM没什么很大的区别。

Gui软件界面制作与打包:

       建议学习白月黑羽的教程,上链接:白月黑羽

       我的理解是GUI就是要做好信号和槽的连接,其他都是进阶,先做出来,后面都是2.0。

       图形用户界面(Graphical User Interface,简称 GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。图形用户界面是一种人与计算机通信的界面显示格式,允许用户使用鼠标等输入设备操纵屏幕上的图标或菜单选项,以选择命令、调用文件、启动程序或执行其它一些日常任务。

       这里完成这个任务我所使用的是PyCharm和外部工具QtDesigner,第三方库是PyQt5,先在QtDesigner中将页面设计好,如图3所示,其中包含选择机型的下拉框“请选择要预测的飞机”,会将战机参数在下方显示,再通过下方“请选择使用的预测方法”选择预测方法(KNN/SVM),接着点击开始预测,则会将得到的飞机参数输送给预测算法,并将结果显示在下方的结果展示区“输出预测结果”,包括真实机型和预测机型,在右侧是将不同的飞机型号图片进行插入。

       设计好的界面保存为ui格式的文件“FighterRecognition.ui”,并在python文件中将其调用,语句为:self.ui = uic.loadUi("FighterRecognition.ui")

       这样做的好处是每次修改图形界面后直接生成ui文件,再调用即可,不用担心由ui文件生成py文件后多次修改,迭代方便。

       接着通过编写与图形界面相关联的“槽”与“信号”的代码对信息进行显示、调用和输出。

Python控制台运行结果输出到GUI(PyQt5)_cocajoo的博客-CSDN博客

pyqt5输出内容到界面GUI以及调用子窗口_pyqt5输出信息到界面文本框_Starterman的博客-CSDN博客

       功能:

       通过输入未知飞行器的参数,如:长度、翼展、高度等数据,使用KNN算法或SVM算法进行分类预测,需要提前使用大数据训练,其中训练飞机的类型决定了预测飞机的可能种类,训练的越多,预测结果的种类也会越多,即此程序将输入的飞机归类为已有的最相近的那个飞机。

       训练数据为Mygui文件夹下plane_data.xls表格,测试数据为Mygui文件夹下test_data.xls

       用法:

       双击Mygui\dist\FighterRecognition\FighterRecognition.exe,即可启动程序;左侧为功能及数据显示区域,右侧为图片展示区。

       首先在选择机型选项中选择要预测的未知飞机,则将会把飞机数据显示在对应的数据框中;在下方选择预测的方法,可以选择KNN或SVM两类算法,再点击开始预测,预测结果在左下角显示,会与真实机型对比。

       KNN和SVM算法代码在Mygui文件夹下也有放置。

       更改:

       在Mygui文件夹下FighterRecognition.py文件即为程序源码,Gui界面是使用QtDesigner设计的,在py文件中,调用FighterRecognition.ui文件来实现,更改源码后,可以使用第三方库pyinstaller将程序打包为exe可执行文件。

        

这篇关于使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830051

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(