R语言:microeco:一个用于微生物群落生态学数据挖掘的R包:第七:trans_network class

本文主要是介绍R语言:microeco:一个用于微生物群落生态学数据挖掘的R包:第七:trans_network class,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 网络是研究微生物生态共现模式的常用方法。在这一部分中,我们描述了trans_network类的所有核心内容。
# 网络构建方法可分为基于关联的和非基于关联的两种。有几种方法可以用来计算相关性和显著性。
#我们首先介绍了基于关联的网络。trans_network中的cal_cor参数用于选择相关计算方法。

> t1 <- trans_network$new(dataset = dataset, cal_cor = "base", taxa_level = "OTU", filter_thres = 0.0001, cor_method = "spearman")

> devtools::install_github('zdk123/SpiecEasi')
> library(SpiecEasi)
# SparCC method, require SpiecEasi package
> t1 <- trans_network$new(dataset = dataset, cal_cor = "SparCC", taxa_level = "OTU", filter_thres = 0.001, SparCC_simu_num = 100)
# require WGCNA package
> library(WGCNA)
> t1 <- trans_network$new(dataset = dataset, cal_cor = "WGCNA", taxa_level = "OTU", filter_thres = 0.0001, cor_method = "spearman")

#参数COR_cut可用于选择相关阈值。此外,COR_optimization = TRUE表示使用RMT理论寻找优化的相关阈值,而不是COR_cut。
> t1$cal_network(p_thres = 0.01, COR_optimization = TRUE)
# use arbitrary coefficient threshold to contruct network
> install.packages("rgexf")
> t1$save_network(filepath = "network.gexf")
#根据Gephi中计算出的模块绘制网络并给出节点颜色。
#https://gephi.org/users/download/ 下载grephi

#现在,我们用门的信息显示节点的颜色,用正相关和负相关来显示边缘的颜色。所有使用的数据

#都存储在网络中。gexf文件,包括模块分类、门信息和边分类。

> t1$cal_network_attr()
Result is stored in object$res_network_attr ...
> t1$res_network_attrVertex                 4.070000e+02
Edge                   1.989000e+03
Average_degree         9.773956e+00
Average_path_length    2.784505e+00
Network_diameter       9.000000e+00
Clustering_coefficient 4.697649e-01
Density                2.407378e-02
Heterogeneity          1.193606e+00
Centralization         9.907893e-02
Modularity             5.485651e-01
> t1$cal_network_attr()
Result is stored in object$res_network_attr ...
> t1$res_network_attrVertex                 4.070000e+02
Edge                   1.989000e+03
Average_degree         9.773956e+00
Average_path_length    2.784505e+00
Network_diameter       9.000000e+00
Clustering_coefficient 4.697649e-01
Density                2.407378e-02
Heterogeneity          1.193606e+00
Centralization         9.907893e-02
Modularity             5.485651e-01
> t1$cal_module()
Use cluster_fast_greedy function to partition modules ...
Totally, 25 modules are idenfified ...
Modules are assigned in network with attribute name -- module ...
> t1$get_node_table(node_roles = TRUE)
The nodes (22) with NaN in z will be filtered ...
Result is stored in object$res_node_table ...
> t1$plot_taxa_roles(use_type = 1)
Warning message:
Removed 22 rows containing missing values (`geom_point()`). 

t1$plot_taxa_roles(use_type = 2)

> t1$cal_eigen()
#然后用相关热图来显示特征基因与环境因素之间的关系。
> t2 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
> t2$cal_cor(add_abund_table = t1$res_eigen)
> t2$plot_cor()

# 函数cal_sum_links()用于对从一个分类单元到另一个分类单元或同一分类单元中的链接(边)数求和。
# 函数plot_sum_links()用于显示函数cal_sum_links()的结果。这对于快速查看不同分类群之间或一个分类群内部连接了多少节点非常有用。
# 对于本教程中的“门”级别,函数cal_sum_links()将从一个门到另一个门或同一门中的连杆数求和。
# 所以圆形图外围的数字表示有多少条边或连接与门有关。例如,就Proteobacteria而言,
# 大约总共有900条边与Proteobacteria中的OTUs相关,其中大约有200条边将Proteobacteria中的两个OTUs连接起来,
# 大约有150条边将Proteobacteria中的OTUs与来自Chloroflexi的OTUs连接起来。

# 函数cal_sum_links()用于对从一个分类单元到另一个分类单元或同一分类单元中的链接(边)数求和。
# 函数plot_sum_links()用于显示函数cal_sum_links()的结果。这对于快速查看不同分类群之间或一个分类群内部连接了多少节点非常有用。
# 对于本教程中的“门”级别,函数cal_sum_links()将从一个门到另一个门或同一门中的连杆数求和。
# 所以圆形图外围的数字表示有多少条边或连接与门有关。例如,就Proteobacteria而言,
# 大约总共有900条边与Proteobacteria中的OTUs相关,其中大约有200条边将Proteobacteria中的两个OTUs连接起来,
# 大约有150条边将Proteobacteria中的OTUs与来自Chloroflexi的OTUs连接起来。

# calculate the links between or within taxonomic ranks
> t1$cal_sum_links(taxa_level = "Phylum")
# return t1$res_sum_links_pos and t1$res_sum_links_neg
# require chorddiag package
> devtools::install_github("mattflor/chorddiag", build_vignettes = TRUE)
> t1$plot_sum_links(plot_pos = TRUE, plot_num = 10)

> #subset_network()函数可用于从网络中提取部分节点和这些节点之间的边。在这个函数中,应该使用node参数提供所需的节点。
> t1$subset_network(node = t1$res_node_type %>% .[.$module == "M1", ] %>% rownames, rm_single = TRUE)
IGRAPH 7df7c55 UNW- 407 1989 -- 
+ attr: name (v/c), taxa (v/c), Phylum (v/c), RelativeAbundance (v/n), module (v/c), label (e/c), weight (e/n)
+ edges from 7df7c55 (vertex names):[1] OTU_50   --OTU_357   OTU_50   --OTU_154   OTU_305  --OTU_3303  OTU_305  --OTU_2564  OTU_305  --OTU_30    OTU_1    --OTU_13824 OTU_1    --OTU_4731 [8] OTU_1    --OTU_34    OTU_1    --OTU_301   OTU_1    --OTU_668   OTU_1    --OTU_1169  OTU_1    --OTU_847   OTU_1    --OTU_1243  OTU_1    --OTU_266  
[15] OTU_1    --OTU_1897  OTU_1    --OTU_1185  OTU_1    --OTU_1892  OTU_1    --OTU_1811  OTU_1    --OTU_126   OTU_1    --OTU_902   OTU_1    --OTU_351  
[22] OTU_1    --OTU_264   OTU_1    --OTU_1173  OTU_1    --OTU_1866  OTU_1    --OTU_1848  OTU_1    --OTU_1204  OTU_41   --OTU_117   OTU_59   --OTU_78   
[29] OTU_59   --OTU_357   OTU_59   --OTU_943   OTU_2733 --OTU_2725  OTU_4050 --OTU_7205  OTU_4050 --OTU_3522  OTU_4147 --OTU_1646  OTU_4147 --OTU_109  
[36] OTU_4147 --OTU_7557  OTU_4147 --OTU_265   OTU_4147 --OTU_3164  OTU_4147 --OTU_8029  OTU_4147 --OTU_107   OTU_4147 --OTU_7648  OTU_4147 --OTU_3138 
[43] OTU_4147 --OTU_1812  OTU_4147 --OTU_2784  OTU_4147 --OTU_426   OTU_4147 --OTU_1850  OTU_4147 --OTU_3712  OTU_4147 --OTU_3321  OTU_4147 --OTU_12327
[50] OTU_4147 --OTU_3159  OTU_4147 --OTU_7630  OTU_4147 --OTU_1885  OTU_4147 --OTU_1827  OTU_4147 --OTU_7346  OTU_4147 --OTU_4531  OTU_4147 --OTU_1810 
+ ... omitted several edges
> #然后,我们展示了下一个实现的网络构建方法:SpiecEasi R包中的SpiecEasi(稀疏逆协方差估计for Ecological Association Inference)网络。
> # cal_cor select NA
> t1 <- trans_network$new(dataset = dataset, cal_cor = NA, taxa_level = "OTU", filter_thres = 0.0005)
After filtering, 301 features are remained ...
> # require SpiecEasi package  https://github.com/zdk123/SpiecEasi
> t1$cal_network(network_method = "SpiecEasi")
---------------- 2024-03-18 15:42:16.310147 : Start ----------------
Applying data transformations...
Selecting model with pulsar using stars...
Fitting final estimate with mb...
done
---------------- 2024-03-18 15:48:05.015648 : Finish ----------------
The result network is stored in object$res_network ...
> t1$res_network
IGRAPH da9387f UNW- 301 1595 -- 
+ attr: name (v/c), taxa (v/c), Phylum (v/c), RelativeAbundance (v/n), weight (e/n), label (e/c)
+ edges from da9387f (vertex names):[1] OTU_32  --OTU_238  OTU_32  --OTU_115  OTU_32  --OTU_578  OTU_32  --OTU_260  OTU_32  --OTU_62   OTU_32  --OTU_1283 OTU_32  --OTU_205  OTU_32  --OTU_315 [9] OTU_32  --OTU_64   OTU_32  --OTU_348  OTU_32  --OTU_345  OTU_32  --OTU_201  OTU_50  --OTU_408  OTU_50  --OTU_59   OTU_50  --OTU_3303 OTU_50  --OTU_117 
[17] OTU_50  --OTU_318  OTU_50  --OTU_632  OTU_50  --OTU_67   OTU_50  --OTU_3052 OTU_50  --OTU_357  OTU_50  --OTU_771  OTU_50  --OTU_30   OTU_50  --OTU_674 
[25] OTU_305 --OTU_59   OTU_305 --OTU_37   OTU_305 --OTU_3303 OTU_305 --OTU_146  OTU_305 --OTU_67   OTU_305 --OTU_578  OTU_305 --OTU_3052 OTU_305 --OTU_28  
[33] OTU_305 --OTU_30   OTU_305 --OTU_26   OTU_305 --OTU_92   OTU_305 --OTU_58   OTU_408 --OTU_23   OTU_408 --OTU_22   OTU_408 --OTU_117  OTU_408 --OTU_169 
[41] OTU_408 --OTU_27   OTU_408 --OTU_217  OTU_408 --OTU_3052 OTU_408 --OTU_1830 OTU_408 --OTU_530  OTU_6426--OTU_31   OTU_6426--OTU_515  OTU_6426--OTU_372 
[49] OTU_6426--OTU_409  OTU_6426--OTU_293  OTU_6426--OTU_341  OTU_6426--OTU_1819 OTU_6426--OTU_1922 OTU_6426--OTU_970  OTU_6426--OTU_430  OTU_75  --OTU_31  
[57] OTU_75  --OTU_22   OTU_75  --OTU_515  OTU_75  --OTU_204  OTU_75  --OTU_656  OTU_75  --OTU_839  OTU_75  --OTU_1922 OTU_75  --OTU_21   OTU_75  --OTU_431 
+ ... omitted several edges

> t1$plot_network()

这一期跑了很久。大家慎跑。

这篇关于R语言:microeco:一个用于微生物群落生态学数据挖掘的R包:第七:trans_network class的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825047

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ