基于Volterra级数的DFE判决反馈均衡器可见光通信系统误码率matlab仿真

本文主要是介绍基于Volterra级数的DFE判决反馈均衡器可见光通信系统误码率matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

判决反馈均衡器(Decision Feedback Equalizer, DFE)原理

在可见光通信系统中的应用

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.................................................................% 生成随机输入信号msg0    = randi([0,2^numberOfBits-1],maxRuns*2,1);% 使用PAM调制pilot   = real(pammod(msg0,2^numberOfBits,0,'gray'));% 计算卷积长度Cov_Len = length(pilot) + LEDfreqRespPoints -1;% 计算FFT的尺寸NFFT    = 2^nextpow2(Cov_Len);% 对调制信号进行FFTpilotFreq = fft(pilot,NFFT);% 生成频率向量f = fs/2*linspace(0,1,NFFT/2 + 1)*2*pi;% 生成对称频率向量w = [-fliplr(f(2:end-1)) f];% 计算LED的频率响应LEDResp = func_LEDfreq(w);% 对信号进行滤波msg_filter = real(ifft(pilotFreq.*fftshift(LEDResp))); % 修剪滤波后的信号filteredVin = msg_filter(1:length(pilot));% 计算电压常数VoltageConstant = Modn_idx*maxVoltage/((1+Modn_idx)*max(filteredVin));% 调整信号电压filteredVin = filteredVin*VoltageConstant + VDC;% 计算LED输出电流    iLEDOutput = func_IV(filteredVin,Uvt,Nled,ISat);% 计算电功率Pow_out = filteredVin.*iLEDOutput;% 计算光功率Opt_Pow_out = Poptical(Eff_led,Pow_out,kNonLinearity);% 计算光功率的卷积输出Opt_Pow_cout = Opt_Pow_out*H_0;% 生成噪声信号n = randn(length(Opt_Pow_cout),1); % 计算接收到的电流信号Rec_Isignal = Opt_Pow_cout*R*A;% 去直流分量Rec_ac = Rec_Isignal - mean(Rec_Isignal);% 计算信号功率Rec_pow = Rec_ac'*Rec_ac/length(Rec_Isignal);% 计算噪声功率Pow_noise = n'*n/(length(n));% 计算所需的噪声功率powerNoise = (Rec_pow/db2pow(SNR));% 调整噪声信号的功率n = n.*sqrt(powerNoise/Pow_noise);% 添加噪声到接收信号Rec_voltages = (Rec_Isignal + n);% 去直流分量Rec_voltages = Rec_voltages - mean(Rec_voltages);% 调整接收信号的方差receivedVoltageSignal =  Rec_voltages*sqrt(var(pilot)/var(Rec_voltages));% 准备信号向量xAux = [zeros(N-1,1);receivedVoltageSignal];% 初始化权重矩阵w = zeros(adapFiltLength,maxRuns);% 初始化期望信号矩阵d = zeros(maxRuns + delayinSamples + 1,1);% 初始化误差信号矩阵e = zeros(maxRuns + delayinSamples + 1,1);% 对每个时间步
119

4.算法理论概述

       Volterra级数是一种描述非线性系统行为的强大工具。在一个非线性系统中,输出信号y(t) 可以通过输入信号x(t) 的多个卷积和来表示,形成所谓的Volterra级数。第一阶Volterra核(线性部分)和高阶Volterra核(非线性部分)共同决定了系统的整体响应。对于一个非线性系统,其输出可以用以下形式的Volterra级数表示:

       其中,ℎ1h1​ 是一阶Volterra核,代表线性响应;ℎ2,ℎ3,...h2​,h3​,... 是二阶及更高阶的Volterra核,它们描述了系统的非线性特性;τ1​,τ2​,... 表示时间延迟。

判决反馈均衡器(Decision Feedback Equalizer, DFE)原理

        在通信系统中,判决反馈均衡器主要用于克服信道引起的码间干扰(ISI)。DFE包含两个主要部分:前馈均衡器(FFE)和反馈均衡器(FBF)。

        假设接收信号为r(t),经过FFE处理后的信号为rffe​(t),则该信号进入判决器产生初步判决结果 x^(t)。然后将x^(t) 通过反馈均衡器与原始接收信号进行减法操作,得到最终均衡后信号 y^​(t):

       在基于Volterra级数的DFE设计中,会利用Volterra级数对非线性失真进行建模,并在设计反馈均衡器时考虑这些非线性项的影响。

在可见光通信系统中的应用

       在可见光通信(VLC)系统中,由于光源的非线性特性、光电检测器的响应以及信道的多径效应等因素,可能导致严重的非线性失真和ISI问题。因此,可以采用基于Volterra级数的DFE技术来改善这些问题。

       数学模型(简化表达): 假设 VLC 系统的非线性失真可以通过高阶Volterra级数近似,那么针对接收到的信号r(t),均衡过程可描述为:

其中,hn​ 是第n 阶Volterra核,N 是考虑的最高阶数。

       实际实现过程中,需要先通过实验或理论分析确定Volterra核的具体形式,然后将其应用于DFE的设计中,使得均衡器能够更好地抵消由非线性导致的失真,从而提高系统的误码率性能。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于Volterra级数的DFE判决反馈均衡器可见光通信系统误码率matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824929

相关文章

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用