任何图≌自己这一几何最最起码常识推翻直线公理和平面公理

2024-03-16 13:52

本文主要是介绍任何图≌自己这一几何最最起码常识推翻直线公理和平面公理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

黄小宁
与x∈R相异(等)的实数均可表为y=x+δ(增量δ可=0也可≠0)。因各实数的绝对值都可是表示长度的数故各实数都可是一维空间“管道”g内点的坐标。于是x∈R变换为实数y=x+δ的几何意义可是:“管道”g内R轴上的质点x∈R(x是点的坐标)运动到新的位置x+δ=y还在管道g内即实数的改变可几何化为g内质点的位置的改变。R可几何化为R轴, R各数x可几何化为R轴各点,两变数可几何化为g内两动点。R各元x不保距变为y=2x组成元为y的数集的几何意义是:R轴即x轴各元点x沿管道g不保距平移变为点x+δ=y=2x生成元为点y的y=2x轴即x轴拉伸(放大)变换为y=2x轴(不≌x轴)叠压在x轴上(y=2x轴可压缩变换为x轴)。中学数学认定y轴=x轴(自有函数概念几百年来数学一直有函数“常识”:R各元x的对应2x的全体是R),因有直线公理。其实这是违反几何最起码常识的肉眼直观错觉。两直线互不≌就更不相等。
复平面z均匀伸展(放大)变换为2z面不≌z面从而更≠z面。然而平面公理使世人一直误以为z面=2z面。详论见已公开发表的论文《中学数学重大错误:将N外自然数误为N内数》http://www.360doc.com/content/23/0324/02/70996036_1073349758.shtml

3aa06bebb1854667a467d4c093c1f3d1.jpg

b610603cd3a448b29703752764af43de.jpg 

 

这篇关于任何图≌自己这一几何最最起码常识推翻直线公理和平面公理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815693

相关文章

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

poj 3304 几何

题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。 解题思路:如果存在这样的直线,过投影相交点(或投影相交区域中的点)作直线的垂线,该垂线(也是直线)必定与每条线段相交,问题转化为问是否存在一条直线和所有线段相交。 若存在一条直线与所有线段相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可。

POJ 2318 几何 POJ 2398

给出0 , 1 , 2 ... n 个盒子, 和m个点, 统计每个盒子里面的点的个数。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y

poj 2653 几何

按顺序给一系列的线段,问最终哪些线段处在顶端(俯视图是完整的)。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y ;Point(){}Po

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

高斯平面直角坐标讲解,以及地理坐标转换高斯平面直角坐标

高斯平面直角坐标系(Gauss-Krüger 坐标系)是基于 高斯-克吕格投影 的一种常见的平面坐标系统,主要用于地理信息系统 (GIS)、测绘和工程等领域。该坐标系将地球表面的经纬度(地理坐标)通过一种投影方式转换为平面直角坐标,以便在二维平面中进行距离、面积和角度的计算。 一 投影原理 高斯平面直角坐标系使用的是 高斯-克吕格投影(Gauss-Krüger Projection),这是 横