【Datawhale组队学习:Sora原理与技术实战】训练一个 sora 模型的准备工作,video caption 和算力评估

本文主要是介绍【Datawhale组队学习:Sora原理与技术实战】训练一个 sora 模型的准备工作,video caption 和算力评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练 Sora 模型

在 Sora 的技术报告中,Sora 使用视频压缩网络将各种大小的视频压缩为潜在空间中的时空 patches sequence,然后使用 Diffusion Transformer 进行去噪,最后解码生成视频。

Open-Sora 在下图中总结了 Sora 可能使用的训练流程。

训练链路:

数据准备

开源数据集:

VideoInstruct-100K:

VideoInstruct100K 是使用人工辅助和半自动注释技术生成的高质量视频对话数据集。数据集中的问题答案与以下内容相关:

  • 视频摘要
  • 基于描述的问题答案(探索空间、时间、关系和推理概念)
  • 创意/生成性问题解答

链接:https://modelscope.cn/datasets/AI-ModelScope/VideoInstruct-100K

panda-70m:

Panda-70M 是一个包含 70M 高质量视频字幕对的大规模数据集。该存储库分为三个部分:

  • 数据集数据加载包括列出 Panda-70M 数据的 csv 文件以及下载数据集的代码。
  • 分割包括将长视频分割成多个语义一致的短片的代码。
  • 字幕包括在 Panda-70M 上训练的拟议视频字幕模型。

链接:https://modelscope.cn/datasets/AI-ModelScope/panda-70m

Youku-mPLUG:

Youku-mPLUG 预训练数据集挖掘自优酷站内海量的优质短视频内容

  • 包含千万级别约 36TB 的视频、文本数据。
  • 其中视频均为覆盖 10 ~ 120 秒的 UGC 短视频内容,文本为视频对应的描述标题,长度 5 ~ 30 不等。
  • 该数据集抽取时品类均衡,内容共包含 45 个大类。

链接:https://modelscope.cn/datasets/modelscope/Youku-AliceMind

MSR-VTT:

MSR-VTT(Microsoft Research Video to Text)是一个开放域视频字幕的大规模数据集。

  • 由 20 个类别的 10,000 个视频片段组成,每个视频片段由 Amazon Mechanical Turks 标注了 20 个英文句子。
  • 所有标题中约有 29,000 个独特单词。
  • 标准分割使用 6,513 个 split 用于训练,497 个 split 用于验证,2,990 个 split 用于测试。

链接:https://modelscope.cn/datasets/AI-ModelScope/msr-vtt

Shot2Story:

视频文本基准和用于多镜头视频理解的可扩展代码。包含 20k 视频的详细长摘要和 80k 视频镜头的镜头字幕。

链接:https://modelscope.cn/datasets/AI-ModelScope/Shot2Story

InternVid:

InternVid 是一个以视频为中心的大规模多模态数据集,可以学习强大且可转移的视频文本表示,以实现多模态理解和生成。 InternVid 数据集包含超过 700 万个视频,持续近 76 万小时,产生 2.34 亿个视频剪辑,并附有总共 4.1B 个单词的详细描述。

链接:https://modelscope.cn/datasets/AI-ModelScope/InternVid

webvid-10M:

大型文本视频数据集,包含从素材网站抓取的1000 万个视频文本对。

链接:https://modelscope.cn/datasets/AI-ModelScope/webvid-10M

数据预处理

目前主流 LLM 框架缺乏针对 video 数据 统一便捷的管理和处理能力,且多模态数据处理标准方案缺失

  • Huggingface-Datasets 官方认为 video 比 image 更棘手,暂未支持
  • 相关 video 库对该场景过于庞杂或简单
  • FFmpeg:150w 行+源码,大量底层细节
  • pytorchvideo:主要支持加载和少量单 video 模态的tensor transform(翻转、扰动、采样等)
  • SORA 官方仅模糊提及使用了 DALLE3 来生成 caption,细粒度的"caption --> spacetime patch"建模比较关键
  • 从 SORA 模型效果看,数据需要有变化的时长、分辨率和宽高比

Data-Juicer扩展了对多模态数据的支持,已实现上百个专用的视频、图像、音频、文本等多模态数据处理算子及工具,帮助用户分析、清洗及生成大规模高质量数据。

  • 支持视频数据的高性能 IO 和处理
  • 支持并行化数据加载:lazy load with pyAV and ffmpeg;多模态数据路径签名
  • 并行化算子处理:支持单机多核;GPU 调用;Ray 多机分布式
  • [WIP] 分布式调度优化;分布式存储优化
  • 基础算子(细粒度模态间匹配及生成)
  • 基础算子(视频时空维度)

  • 基础算子(细粒度模态间匹配及生成)

  • 进阶算子(视频内容)

  • DJ-SORA 数据菜谱及数据集

  • DJ-SORA 数据验证及模型训练

开源链接:https://github.com/alibaba/data-juicer/docs/DJ_SORA_ZH.md

模型选型和训练

视频 VQVAE

VideoGPT 使用 VQ-VAE,通过采用 3D 卷积和轴向自注意力来学习原始视频的下采样离散潜在表示。然后使用一个简单的类似 GPT 的架构,使用时空位置编码对离散潜在变量进行自回归建模。用于 BAIR Robot 数据集上的视频生成,并从 UCF-101 和 Tumbler GIF 生成高保真自然图像数据集(TGIF)。

https://github.com/wilson1yan/VideoGPT/

Diffusion Transformer

普遍认为 Diffusion Transformer 模型是 Sora 的技术基础,通过结合 diffusion model 和 transformer,从而达到可以 scale up model 来提升图像生成质量的效果。我们总结了三个目前开源的 Diffusion Transformer 研究如下,并总结了最佳实践,可以在魔搭社区的免费算力上运行和测试。

UViT:All are Worth Words: A ViT Backbone for Diffusion Models

论文链接:https://arxiv.org/abs/2209.12152

代码库链接:https://github.com/baofff/U-ViT

模型链接:https://modelscope.cn/models/thu-ml/imagenet256_uvit_huge

DiT:Scalable Diffusion Models with Transformers

论文链接:https://arxiv.org/abs/2212.09748

代码库链接:https://github.com/facebookresearch/DiT

模型链接:https://modelscope.cn/models/AI-ModelScope/DiT-XL-2-256x256/summary

SiT:Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers (SiT)

论文链接:https://arxiv.org/pdf/2401.08740.pdf

代码库链接:https://github.com/willisma/SiT

模型链接:https://modelscope.cn/models/AI-ModelScope/SiT-XL-2-256

总结

U-ViT是一种简单且通用的基于 ViT 的扩散概率模型的主干网络,U-ViT 把所有输入,包括图片、时间、条件都当作 token 输入,并且引入了long skip connection。U-ViT 在无条件生成、类别条件生成以及文到图生成上均取得了可比或者优于 CNN 的结果。为未来扩散模型中骨干网络研究提供见解,并有利于大规模跨模态数据集的生成建模。

DiT同样的提出了使用 ViT 代替 U-Net 的思想,不同的是 DiT 中没有引入 long skip connection 也依然取得了杰出的效果。推测原因可能有:

  • DiT 出色的Adaptive layer norm以及零初始化的设计能够有效提升生成质量;
  • DiT 在建模特征空间表现良好,但在建模像素空间表现欠缺,可能在用扩散概率模型建模像素空间分布时 long skip connection 是至关重要的;
  • 即使在建模特征空间上,DiT 没有 long skip connection 也能取得很好的效果,但 long skip connection 在加速收敛方面也起着关键的作用。

而近期推出的可扩展插值变压器 (SiT),是建立在 DiT 基础上的生成模型系列。 **插值框架,**相比标准的 diffusion 模型允许以更灵活的方式连接两个 distributions,使得对影响生成的各种设计选择的模块化研究成为可能。SiT 在 ImageNet 256x256 基准上模型大小和效果超过了 DiT 和 UViT,SiT 实现了 2.06 的 FID-50K 分数。

Video-caption

OpenAI 训练了一个具备高度描述性的视频标题生成(Video Captioning)模型,使用这个模型为所有的视频训练数据生成了高质量文本标题,再将视频和高质量标题作为视频文本对进行训练。通过这样的高质量的训练数据,保障了文本(prompt)和视频数据之间高度的 align。通过近期的讨论和资料,我们推测 Video Captioning 模型是由多模态大语言模型 VLM(如**GPT4V 模型)**微调出来的。开发者也可以通过视频抽帧+开源 VLM 生成描述+LLM 总结描述的方式,生成较好的视频描述。下面是一些开源的多模态模型:

零一万物 VL 模型(Yi-VL-34B)

代码库链接:https://github.com/01-ai/Yi/tree/main/VL

模型链接:https://modelscope.cn/models/01ai/Yi-VL-34B/

通义千问 VL 模型(Qwen-VL-Chat)

论文链接:https://arxiv.org/abs/2308.12966

代码库链接:https://github.com/QwenLM/Qwen-VL

模型链接:https://modelscope.cn/models/qwen/Qwen-VL-Chat

浦语·灵笔 2-视觉问答-7B(internlm-xcomposer2-vl-7b)

代码库链接:https://github.com/InternLM/InternLM-XComposer

模型链接:https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b/summary

CogVLM 模型:

技术报告:https://zhipu-ai.feishu.cn/wiki/LXQIwqo1OiIVTykMh9Lc3w1Fn7g

代码库链接:https://github.com/THUDM/CogVLM

模型链接:https://modelscope.cn/models/ZhipuAI/CogVLM/summary

MiniCPM-V 模型:

论文链接:https://arxiv.org/abs/2308.12038

代码库链接:https://github.com/OpenBMB/OmniLMM/

模型链接:https://modelscope.cn/models/OpenBMB/MiniCPM-V/summary

Video-LLaVA 模型:

论文链接:https://arxiv.org/abs/2311.10122

代码库链接:https://github.com/PKU-YuanGroup/Video-LLaVA

模型链接:https://modelscope.cn/models/PKU-YuanLab/Video-LLaVA-7B/summary

总结对比

从模型参数量来看,零一万物,CogVLM 的模型是百亿参数,但是仅支持英文,通义,灵笔等模型可以较好的支持中文,Video-LLaVA 可以支持直接对视频的理解,可以根据需求来选择具体的多模态大语言模型。

参考资料

sora-tutorial/docs/chapter3/chapter3_1/chapter3_1.md at main · datawhalechina/sora-tutorial (github.com)

学习视频:【AI+X组队学习】Sora原理与技术实战:训练一个sora模型的准备工作,video caption和算力评估_哔哩哔哩_bilibili

Open-Sora:https://hpc-ai.com/blog/open-so

这篇关于【Datawhale组队学习:Sora原理与技术实战】训练一个 sora 模型的准备工作,video caption 和算力评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812909

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操