8分SCI | 揭示随机森林的解释奥秘:探讨LIME技术如何提高模型的可解释性与可信度!

本文主要是介绍8分SCI | 揭示随机森林的解释奥秘:探讨LIME技术如何提高模型的可解释性与可信度!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

Local Interpretable Model-agnostic Explanations (LIME) 技术作为一种局部可解释性方法,能够解释机器学习模型的预测结果,并提供针对单个样本的解释。通过生成局部线性模型来近似原始模型的预测,LIME技术可以帮助用户理解模型在特定样本上的决策过程,提高模型的可解释性和信任度。在实际应用中,LIME技术已被广泛应用于图像分类、自然语言处理等领域,为模型解释提供了重要支持。

8分SCI《International Journal of Medical Informatics》如上述图所示:HPV状态、M-阶段、年龄、族裔、Sx+RT和化疗对于模型对该特定预测的高生存风险预测起到了作用

二、随机森林的解释能力

2.1 随机森林模型的复杂性

随机森林模型具有较高的预测准确性和鲁棒性,但由于其集成了多个决策树,导致模型的复杂性增加。这使得随机森林模型的解释变得更加困难,传统的解释方法往往无法满足需求。因此,寻找一种有效的解释方法,能够准确地解释随机森林模型的预测结果,对于提高模型的可解释性至关重要。

2.2 传统方法在解释模型中的局限性

传统的解释方法,如特征重要性排序、决策路径分析等,在解释随机森林模型时存在一些局限性。首先,特征重要性排序只能提供特征的相对重要性,无法给出具体的贡献值。其次,决策路径分析只能解释决策树的单一路径,无法全面理解整个随机森林模型的预测过程。这些局限性使得传统方法无法满足对随机森林模型解释的精确需求,需要引入新的解释方法来提高模型的可解释性。

三、LIME技术简介

3.1 LIME技术的原理和工作方式

「Local Interpretable Model-agnostic Explanations (LIME)」 技术是一种局部可解释性方法,能够解释机器学习模型的预测结果。LIME技术的核心思想是通过生成局部线性模型来近似原始模型的预测结果。它通过在特定样本周围生成一组与原始数据类似的“虚拟样本”,并使用这些虚拟样本来训练一个解释性模型(如线性回归模型)。然后,通过分析这个解释性模型,可以获得对该样本预测的解释。

3.2 LIME技术在解释模型中的重要性

LIME技术在解释机器学习模型中扮演着重要的角色。首先,它提供了一种理解模型决策过程的方法,使用户能够更好地理解模型的预测结果。其次,LIME技术是一种模型无关的方法,适用于各种类型的模型,包括随机森林、深度学习等。这使得LIME技术具有广泛的适用性和灵活性。

通过使用LIME技术,可以生成对特定样本预测结果的解释,帮助用户理解模型在个别样本上的决策过程。这对于提高模型的可解释性和可信度非常重要。在实际应用中,LIME技术已经被广泛应用于图像分类、自然语言处理等领域,为模型解释提供了重要支持。

四、实例演示

  • 「数据集准备」
library(survival)
head(gbsg)

结果展示:

   pid age meno size grade nodes pgr er hormon rfstime status
1  132  49    0   18     2     2   0  0      0    1838      0
2 1575  55    1   20     3    16   0  0      0     403      1
3 1140  56    1   40     3     3   0  0      0    1603      0
4  769  45    0   25     3     1   0  4      0     177      0
5  130  65    1   30     2     5   0 36      1    1855      0
6 1642  48    0   52     2    11   0  0      0     842      1
  • 「示例数据集介绍」
> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1"1 2 1 1 1 2 2 1 2 2 ...

age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)
  • 「划分训练集和测试集」
# 划分训练集和测试集
set.seed(123)
data <- gbsg[,c(-1)]


# 划分训练集和测试集
set.seed(123)
train_indices <- sample(x = 1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)
test_indices <- sample(setdiff(1:nrow(data), train_indices), size = 0.3 * nrow(data), replace = FALSE)

train_data <- data[train_indices, ]
test_data <- data[test_indices, ]
  • 「模型拟合」
library(randomForest)
library(caret)
rf <- randomForest(status~., data=train_data)

rf <- caret::train(status~ ., data = train_data,method = "rf",trControl = trainControl(method ="repeatedcv", number = 10,repeats = 5, verboseIter = FALSE))
  • 「模型评估」
library(pROC)
# 获取模型预测的概率
pred_prob <- predict(rf, newdata = test_data, type = "class")

# 计算真阳性率和假阳性率
roc <- pROC::roc(test_data$status, pred_prob)

# 绘制ROC曲线
plot(roc, main = "ROC Curve", print.auc = TRUE, auc.polygon = TRUE, grid = TRUE, legacy.axes = TRUE,col="blue")

  • 「LIME分析」
library(lime)
explainer <- lime(train_data, rf)

explanation <-explain(test_data[10,], explainer, n_labels = 1, n_features = 5)
plot_features(explanation)

这次不是复刻,如果对如何生成SCI复刻图,可以@我。

五、LIME和SHAP的比较

5.1 原理:

  1. 「LIME」:LIME基于生成局部可解释性模型来解释模型的预测结果,通过在特定样本周围生成虚拟样本并训练解释性模型来近似原始模型的决策过程。
  2. 「SHAP」:SHAP基于博弈论中的Shapley值概念,通过计算特征值对预测结果的贡献度来解释模型的输出,从而确定每个特征对最终预测结果的影响。

5.2 可解释性:

  1. 「LIME」:LIME提供了局部可解释性,重点解释单个样本或一小组样本的预测结果,帮助用户理解模型在特定实例上的决策过程。
  2. 「SHAP」:SHAP提供了全局解释性,可以解释整个数据集上每个特征对模型预测的总体影响,帮助用户了解特征如何影响模型的整体行为。

5.3 适用范围:

  1. 「LIME」:LIME是一种模型无关的解释方法,适用于各种类型的模型。它在解释复杂模型(如深度学习模型)的局部预测结果时表现良好。
  2. 「SHAP」:SHAP同样适用于各种类型的模型,并且能够提供更全面的特征重要性解释,适用于对整体模型行为感兴趣的场景。

5.4 计算效率:

  1. 「LIME」:LIME通常比SHAP计算速度更快,尤其在处理大规模数据集或复杂模型时,LIME可能是更好的选择。
  2. 「SHAP」:由于SHAP基于Shapley值的计算,对于特征较多的数据集或复杂模型,计算成本可能较高。

综合考虑,选择使用LIME还是SHAP取决于具体的应用需求和情境。如果您关注单个样本或局部预测的解释,可以考虑使用LIME;如果您更关注特征对整体预测结果的影响以及全局模型行为的解释,可以考虑使用SHAP。在实际应用中,有时候也可以结合两者来获得更全面的模型解释。

*「未经许可,不得以任何方式复制或抄袭本篇文章之部分或全部内容。版权所有,侵权必究。」

这篇关于8分SCI | 揭示随机森林的解释奥秘:探讨LIME技术如何提高模型的可解释性与可信度!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810022

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首