【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测

本文主要是介绍【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 数据读取及预处理
  • 2 GARCH模型拟合
  • 3 模型预测
  • 4 VAR、ES风险度量

该篇文章主要展示了应用一个带有标准学生t分布新息的GARCH(1,1)模型,对数据进行拟合并且预测风险损失,同时进行了风险价值VaR和局部均值ES的度量,附完整代码及分析。

1 数据读取及预处理

  运行程序:

da=read.table("F:\\ch7data\\d-ibm-0110.txt",header=T)
xt=-log(da$return+1)   # calculate negative log returns.library(fGarch)

2 GARCH模型拟合

  此处为作演示,拟合GARCH(1,1)模型。

  运行程序:

library(fGarch)
m2=garchFit(~garch(1,1),data=xt,trace=F,cond.dist="std")
m2

  运行结果:

## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = xt, cond.dist = "std", 
##     trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x0000000018857168>
##  [data = xt]
## 
## Conditional Distribution:
##  std 
## 
## Coefficient(s):
##          mu        omega       alpha1        beta1        shape  
## -4.1127e-04   1.9223e-06   6.4480e-02   9.2863e-01   5.7513e+00  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu     -4.113e-04   2.254e-04   -1.824  0.06811 .  
## omega   1.922e-06   7.417e-07    2.592  0.00954 ** 
## alpha1  6.448e-02   1.323e-02    4.874 1.09e-06 ***
## beta1   9.286e-01   1.407e-02   65.993  < 2e-16 ***
## shape   5.751e+00   6.080e-01    9.459  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  7218.69    normalized:  2.870254 

3 模型预测

  此处预测未来三期情况。

  运行程序:

predict(m2,3)

  运行结果:

##    meanForecast   meanError standardDeviation
## 1 -0.0004112737 0.008100874       0.008100874
## 2 -0.0004112737 0.008191121       0.008191121
## 3 -0.0004112737 0.008279774       0.008279774

4 VAR、ES风险度量

  运行程序:

source("F:\\ch7data\\RMeasure.R")
m22=RMeasure(-.0004113,.0081009,cond.dist="std",df=5.751)

  运行结果:

## 
##  Risk Measures for selected probabilities: 
##        prob        VaR         ES
## [1,] 0.9500 0.01240096 0.01756588
## [2,] 0.9900 0.02045082 0.02653004
## [3,] 0.9990 0.03456563 0.04298998
## [4,] 0.9999 0.05421689 0.06640880

  根据结果得出拟合的模型为:

x t = − 0.0004113 + a t ; a t = σ t ϵ t ; ϵ t ∼ N ( 0 , 1 ) x_t=-0.0004113+a_t;a_t=\sigma _t \epsilon_t;\epsilon_t \sim N(0,1) xt=0.0004113+at;at=σtϵt;ϵtN(0,1)

σ t 2 = 1.922 × 1 0 t − 6 + 0.0645 × a t − 1 2 + 0.9286 σ t − 1 2 \sigma _t^2=1.922×10^{-6}_t+0.0645×a_{t-1}^2+0.9286 \sigma_{t-1}^2 σt2=1.922×10t6+0.0645×at12+0.9286σt12

  所有的系数估计在5%的水平下都是显著的。拟合的自由度为5.751,同时,模型检验统计量确认了模型的充分性。在预测下一个时刻时,均值模型和波动率模型的超前一步预测为-0.0004113和0.00801,相应的,我们有:

V a r 0.95 = 0.01514 ; E S 0.95 = 0.02185 Var_{0.95}=0.01514;ES_{0.95}=0.02185 Var0.95=0.01514;ES0.95=0.02185

V a r 0.95 = 0.02542 ; E S 0.95 = 0.03295 Var_{0.95}=0.02542;ES_{0.95}=0.03295 Var0.95=0.02542;ES0.95=0.03295

  因此,应用学生t分布的新息,该金融头寸的风险度量为:

V a r 0.95 = 15450 ; E S 0.95 = 21850 Var_{0.95}=15450;ES_{0.95}=21850 Var0.95=15450;ES0.95=21850

  结合 【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量可以看出,具有厚尾的新息会给出更高的风险度量,说明正态假设下的VaR倾向于低估真实的风险。

这篇关于【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808364

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis