本文主要是介绍数据结构中的平衡搜索树 --- 红黑树 (如何旋转与变色),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
红黑树的概念
红黑树的性质
红黑树节点的定义
红黑树的插入
1. 按照二叉搜索的树规则插入新节点
2. 检测新节点插入后,红黑树的性质是否造到破坏
红黑树的概念
红黑树的性质
- 1. 每个结点不是红色就是黑色
- 2. 根节点是黑色的
- 3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
- 4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
- 5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
红黑树节点的定义
enum Color {RED,BLACK, };template<class K,class V> struct RBTreeNode {RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col; //节点颜色RBTreeNode(const pair<K,V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED) //默认红色{} };
为什么构造函数中的节点默认给的是红色? 通过红黑树的性质能总结出:
性质3 - 代表着不能出现连续的红色节点
性质4 - 每条路径上都有相同数量的黑色节点
这时会发现违反性质3比违反性质4的代价要更小,而事实上也的确是这样做的,可能会有疑问,这样还是红黑树嘛,其实新增节点之后是需要通过变色来达到红黑树的结构的。(如下)
示例:
此时我们会发现,最后的结构是符合红黑树的:没有出现连续的红色节点;每条路径上的黑色节点数量相同。
红黑树的插入
1. 按照二叉搜索的树规则插入新节点
template<class K, class V> class RBTree {typedef RBTreeNode<K, V> Node;bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr; //记录cur的父节点,方便进行链接while (cur){if (kv.first < cur->_kv.first) //插入的值小于存储的值{parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first) //插入的值大于存储的值{parent = cur;cur = cur->_right;}else{return false; //相等,插入失败}}//注意:新增的节点构造是红色,所以这里不用给颜色cur = new Node(kv); if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent; //...调整颜色return true;}protected:Node* _root = nullptr; };
2. 检测新节点插入后,红黑树的性质是否造到破坏
注意:关于旋转处理可以参考AVL树的旋转处理
约定:1.grandfather->_left = parent; grandfather->_right = uncle; (父节点在左,叔节点在右)
grandfather为黑,parent为红,cur(新增节点)为红
① uncle节点存在且为红色 ----》 parent , uncle 改黑,grandfather改红,继续向上调整
② uncle节点不存在 or 存在且为黑 - 单旋
③ uncle节点不存在 or 存在且为黑 - 双旋
约定:2.grandfather->_left = uncle; grandfather->_right = parent; (叔节点在左,父节点在右)
(参考上面)
具体代码演示:
//旋转+更改颜色while (parent && parent->_col == RED){//记录祖先节点Node* grandfather = parent->_parent;//父节点是祖先节点的左子树if (grandfather->_left == parent){Node* uncle = grandfather->_right;//①uncle节点存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//继续向上调整cur = grandfather;parent = cur->_parent; //注意需要重新计数parent}else {//②uncle不存在 or 存在且为黑 -> 变色 + 旋转if (cur == parent->_left) {//单旋RotateR(grandfather); parent->_col = BLACK;grandfather->_col = RED;}else{//双旋RotateL(parent); RotateR(grandfather);parent->_col = grandfather->_col = RED;cur->_col = BLACK;}break;}}else if (grandfather->_right == parent) //父节点是祖先节点的右子树{Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent; }else{if (cur == parent->_right){//单旋RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//双旋RotateR(parent);RotateL(grandfather);parent->_col = grandfather->_col = RED;cur->_col = BLACK;}break;}}else{assert(false); }}//结尾做保险处理,无论什么情况,根节点置成黑_root->_col = BLACK;
附上红黑树(测试是否是红黑树)部分代码:
RBTree.h
#pragma once #include <iostream> #include <assert.h> #include <string>using namespace std;enum Color {RED,BLACK, };template<class K,class V> struct RBTreeNode {RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col; //节点颜色RBTreeNode(const pair<K,V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED) //默认红色{} };template<class K, class V> class RBTree {typedef RBTreeNode<K, V> Node;public:void InOrder(){_InOrder(_root);cout << endl;}//检查是否是红黑树bool IsBalance(){//检查1:根节点颜色if (_root && _root->_col != BLACK){cout << "根节点为红" << endl;return false;}//检查2:是否存在连续红色节点//检查3:每条路径上的黑色节点是否相同return _Check(_root, 0);}bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr; //记录cur的父节点,方便进行链接while (cur){if (kv.first < cur->_kv.first) //插入的值小于存储的值{parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first) //插入的值大于存储的值{parent = cur;cur = cur->_right;}else{return false; //相等,插入失败}}//注意:新增的节点构造是红色,所以这里不用给颜色cur = new Node(kv); if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent; //旋转+更改颜色while (parent && parent->_col == RED){//记录祖先节点Node* grandfather = parent->_parent;//父节点是祖先节点的左子树if (grandfather->_left == parent){Node* uncle = grandfather->_right;//①uncle节点存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//继续向上调整cur = grandfather;parent = cur->_parent; //注意需要重新计数parent}else {//②uncle不存在 or 存在且为黑 -> 变色 + 旋转if (cur == parent->_left) {//单旋RotateR(grandfather); parent->_col = BLACK;grandfather->_col = RED;}else{//双旋RotateL(parent); RotateR(grandfather);parent->_col = grandfather->_col = RED;cur->_col = BLACK;}break;}}else if (grandfather->_right == parent) //父节点是祖先节点的右子树{Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent; }else{if (cur == parent->_right){//单旋RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//双旋RotateR(parent);RotateL(grandfather);parent->_col = grandfather->_col = RED;cur->_col = BLACK;}break;}}else{assert(false); }}//结尾做保险处理,无论什么情况,根节点置成黑_root->_col = BLACK;return true;}protected:void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " ";_InOrder(root->_right);}bool _Check(Node* root, int BlackNums){if (root == nullptr){cout <<BlackNums << endl;return true;}//这里是传值返回if (root->_col == BLACK)++BlackNums;//root与root的子树不好判断,因为节点不一定有子树,但是一定有父节点if (root->_col == RED &&root->_parent && root->_parent->_col == RED){cout << "存在连续的红色节点" << endl;return false;}return _Check(root->_left, BlackNums)&& _Check(root->_right, BlackNums);}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;//提前记录祖先节点Node* pparent = parent->_parent;subR->_left = parent;parent->_parent = subR;//值得注意的是,parent节点不一定为根节点,也就是旋转的可能是一棵子树而不是整棵树if (pparent == nullptr) //意味着parent节点是根节点{_root = subR;_root->_parent = nullptr;}else{//判断parent 在 祖先节点的左还是右if (pparent->_right == parent){pparent->_right = subR;}else{pparent->_left = subR;}subR->_parent = pparent; //更改subR的父节点}}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;//提前记录祖先节点Node* pparent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{//判断parent 在 祖先节点的左还是右if (pparent->_right == parent){pparent->_right = subL;}else{pparent->_left = subL;}subL->_parent = pparent; //更改subR的父节点}}protected:Node* _root = nullptr; };void Test_RBTree1() {int arr1[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };int arr2[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };RBTree<int, int> t1;for (auto e : arr1){t1.Insert(make_pair(e, e));cout << e << "插入:" << t1.IsBalance() << endl; //插入进行检查}t1.InOrder();cout << t1.IsBalance() << endl; }
这篇关于数据结构中的平衡搜索树 --- 红黑树 (如何旋转与变色)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!