药物发现中的AI革命:大规模预训练模型的应用

2024-03-13 07:20

本文主要是介绍药物发现中的AI革命:大规模预训练模型的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:

药物发现中的AI革命正在改变传统药物研发模式,大规模预训练模型的应用为药物发现带来了新的机遇。本文将概述大规模预训练模型在药物发现中的重要性,并详细介绍其应用流程。

引言:

药物发现是医药行业的重要环节,传统药物发现方法存在周期长、成本高、成功率低等问题。随着人工智能技术的发展,AI技术在药物发现领域得到了广泛应用,推动了药物发现进入新的阶段。

基础知识回顾:

药物发现的基本流程包括靶点发现、化合物筛选、药效评估等环节。传统药物发现方法主要依靠实验筛选,存在一定的局限性。

核心组件:

  1. 大规模预训练模型:如Transformer、GPT、BERT等,用于从海量数据中学习药物分子的表示。
    1. 数据集:包括药物分子数据集和生物医学文本数据集,用于训练和验证模型。
    1. 模型训练与优化:涉及损失函数设计、优化算法选择和模型调参技巧。

实现步骤:

  1. 数据预处理:包括数据清洗和数据增强,提高数据质量。
    1. 模型训练:通过预训练模型微调和训练技巧,获得高性能模型。
    1. 模型评估:采用交叉验证和评价指标,评估模型性能。

代码示例:

import torch
from torch import nn
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertModel# 加载数据集
train_data = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_data = DataLoader(val_dataset, batch_size=32, shuffle=False)# 初始化模型
model = BertModel.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)# 模型训练
for epoch in range(10):model.train()for i, batch in enumerate(train_data):inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors='pt')labels = torch.tensor(batch['label'])outputs = model(**inputs)loss = criterion(outputs.logits, labels)optimizer.zero_grad()loss.backward()optimizer.step()if i % 10 == 0:print(f'Epoch {epoch+1}, Step {i}, Loss {loss.item()}')# 模型评估model.eval()correct = 0total = 0for batch in val_data:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors='pt')labels = torch.tensor(batch['label'])outputs = model(**inputs)_, predicted = torch.max(outputs.logits, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Validation Accuracy: {100 * correct / total}%')                                                                                                                                                                                                     ```
# 技巧与实践:
1. 模型训练技巧:学习率调整、模型正则化等。
2. 2. 模型部署与优化:模型压缩、模型加速等。
# 性能优化与测试:
1. 模型性能优化:模型融合、模型蒸馏等。
2. 2. 模型测试与验证:A/B测试、模型泛化能力评估等。
# 常见问题与解答:
1. 数据不平衡问题:采用过采样、欠采样等方法。
2. 2. 模型过拟合问题:采用正则化、dropout等方法。
3. 3. 模型部署问题:采用模型压缩、模型加速等方法。
# 结论与展望:
大规模预训练模型在药物发现中具有巨大的应用价值,未来有望进一步推动药物发现的发展。# 附录:
提供相关数据集、代码、参考文献等资源。

这篇关于药物发现中的AI革命:大规模预训练模型的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804059

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2