药物发现中的AI革命:大规模预训练模型的应用

2024-03-13 07:20

本文主要是介绍药物发现中的AI革命:大规模预训练模型的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:

药物发现中的AI革命正在改变传统药物研发模式,大规模预训练模型的应用为药物发现带来了新的机遇。本文将概述大规模预训练模型在药物发现中的重要性,并详细介绍其应用流程。

引言:

药物发现是医药行业的重要环节,传统药物发现方法存在周期长、成本高、成功率低等问题。随着人工智能技术的发展,AI技术在药物发现领域得到了广泛应用,推动了药物发现进入新的阶段。

基础知识回顾:

药物发现的基本流程包括靶点发现、化合物筛选、药效评估等环节。传统药物发现方法主要依靠实验筛选,存在一定的局限性。

核心组件:

  1. 大规模预训练模型:如Transformer、GPT、BERT等,用于从海量数据中学习药物分子的表示。
    1. 数据集:包括药物分子数据集和生物医学文本数据集,用于训练和验证模型。
    1. 模型训练与优化:涉及损失函数设计、优化算法选择和模型调参技巧。

实现步骤:

  1. 数据预处理:包括数据清洗和数据增强,提高数据质量。
    1. 模型训练:通过预训练模型微调和训练技巧,获得高性能模型。
    1. 模型评估:采用交叉验证和评价指标,评估模型性能。

代码示例:

import torch
from torch import nn
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertModel# 加载数据集
train_data = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_data = DataLoader(val_dataset, batch_size=32, shuffle=False)# 初始化模型
model = BertModel.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)# 模型训练
for epoch in range(10):model.train()for i, batch in enumerate(train_data):inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors='pt')labels = torch.tensor(batch['label'])outputs = model(**inputs)loss = criterion(outputs.logits, labels)optimizer.zero_grad()loss.backward()optimizer.step()if i % 10 == 0:print(f'Epoch {epoch+1}, Step {i}, Loss {loss.item()}')# 模型评估model.eval()correct = 0total = 0for batch in val_data:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors='pt')labels = torch.tensor(batch['label'])outputs = model(**inputs)_, predicted = torch.max(outputs.logits, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Validation Accuracy: {100 * correct / total}%')                                                                                                                                                                                                     ```
# 技巧与实践:
1. 模型训练技巧:学习率调整、模型正则化等。
2. 2. 模型部署与优化:模型压缩、模型加速等。
# 性能优化与测试:
1. 模型性能优化:模型融合、模型蒸馏等。
2. 2. 模型测试与验证:A/B测试、模型泛化能力评估等。
# 常见问题与解答:
1. 数据不平衡问题:采用过采样、欠采样等方法。
2. 2. 模型过拟合问题:采用正则化、dropout等方法。
3. 3. 模型部署问题:采用模型压缩、模型加速等方法。
# 结论与展望:
大规模预训练模型在药物发现中具有巨大的应用价值,未来有望进一步推动药物发现的发展。# 附录:
提供相关数据集、代码、参考文献等资源。

这篇关于药物发现中的AI革命:大规模预训练模型的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804059

相关文章

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

SpringCloud之consul服务注册与发现、配置管理、配置持久化方式

《SpringCloud之consul服务注册与发现、配置管理、配置持久化方式》:本文主要介绍SpringCloud之consul服务注册与发现、配置管理、配置持久化方式,具有很好的参考价值,希望... 目录前言一、consul是什么?二、安装运行consul三、使用1、服务发现2、配置管理四、数据持久化总

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库