利用深度学习解决生活中实际问题——卷积网络实现花卉分类识别(附带数据集,完整代码在最后)

本文主要是介绍利用深度学习解决生活中实际问题——卷积网络实现花卉分类识别(附带数据集,完整代码在最后),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验背景:随着深度学习技术的发展,计算机视觉在图像分类方面取得了巨大进展。通过使用深度学习模型,我们课上学习到的卷积神经网络,可以对图像进行高效准确的分类。可以为普通人提供了更便捷的途径来识别和学习植物。深度学习进行植物图像分类的意义在于提高了植物识别的准确性和效率,为人们提供了更多的便利和可能性。

实验意义:本次实验进行植物图像分类的意义在于帮助人们更好地理解和识别植物,尤其是对于那些对植物了解有限的人群。通过对洋甘菊、郁深金香、玫瑰、向日葵、蒲公英等植物图像进行分类,可以为植物学家、园艺爱好者和农业领域提供便利。这项技术还有助于环境保护,例如在监测和保护濒临灭绝的植物物种方面发挥作用。

数据集分析:本次实验中数据集文件名称为:flowers,数据集中数据图片会分为五类:洋甘菊(daisy)、郁金香(tulip)、玫瑰(rose)、向日葵(sunflower)、蒲公英(dandelion)。每个种类大约有800张照片。 照片分辨率不高,约为 320x240 像素。且在数据集文件夹中包含训练数据集和测试数据集。训练集(train)一共有4,317张花卉图片,测试集(test)一共有1,236张花卉图片。

导入相关模块以及必要的变量定义:

import os 
import torch
from PIL import Image
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from torchvision import transforms #pytorch中的图像预处理包:pip3 install torchvision
from torchvision import datasets,models
from torch import nn#导入神经网络包nn(可用来定义和运行神经网络)
from torch import optim#导入优化器包
train_datadir='./flowers/train/'  #指定数据集的文件路径
test_datadir='./flowers/test/'
batch_size =120  #小批量数据集的大小定义为40
learning_rate = 0.005  #梯度下降算法中用到的学习率(learning rate)。
#momentum = 0.5  #梯度下降算法中用到的冲量(momentum)
EPOCH = 10 #训练的轮数。

对数据集进行预处理:

my_transform = transforms.Compose([transforms.Resize((224,224)), #对图像大小进行调整transforms.ToTensor(),  #将图像转换为pytorch张量transforms.Normalize(mean=[0.485, 0.456, 0.406],  #对图像进行标准化处理,将每个像素的数值按照指定的均值和标准差调整,适应模型训练std=[0.229, 0.224, 0.225])])  train_data = datasets.ImageFolder(root=train_datadir,transform=my_transform)  #读取训练数据
test_data  = datasets.ImageFolder(root=test_datadir,transform=my_transform)  #读取测试数据集
#查看datasets.ImageFolder的输出
print(train_data.classes)  #类名List
print(train_data.class_to_idx) #类名和标签构成的字典:(class_name,class_index)
print(train_data.imgs[0]) #数据集元组构成的List:(文件名,标签)
print(len(train_data),len(test_data)) #打印训练集和测试集规模

加载数据:

train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) #随机抽取,形成小批量训练数据集,shuffle表示是否打乱
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)  #顺序抽取,形成小批量测试数据集
for step, (data, targets) in enumerate(train_loader): #enumerate将一个可迭代对象组合为一个索引序列,同时列出数据和数据的索引。这句话中step是训练数据集的索引print(data.size())  #数torch.Size([30, 3, 224, 224]) ,通道为3表示彩色图片print(targets.size())  #小批量数据集为400break

定义卷积网络:

"""
卷积运算 使用花卉数据集分类数据集
"""
class Net(nn.Module):def __init__(self): #没有传参super(Net, self).__init__()self.conv1 = nn.Sequential( #打包第一个卷积,池化nn.Conv2d(3, 30, kernel_size=5),  #kernel_size表示卷积核大小nn.ReLU(), #定义激活函数为relunn.MaxPool2d(kernel_size=2)  )self.conv2 = nn.Sequential(nn.Conv2d(30, 20, kernel_size=5),nn.ReLU(),nn.MaxPool2d(kernel_size=2))self.fc = nn.Sequential(  #打包全连接nn.Linear(20*53*53, 20),nn.ReLU(),nn.Linear(20, 5))def forward(self, x):# Xsize = x.size(0)x = self.conv1(x)  # 一层卷积层,一层池化层,一层激活层(图是先卷积后激活再池化,差别不大)x = self.conv2(x)  # 再来一次x = x.view(-1,20*53*53)  # flatten 变成全连接网络需要的输入 (batch, 20,4,4) ==> (batch,320), -1 此处自动算出的是320x = self.fc(x) #全连接return x  # 最后输出的是维度为10的,也就是(对应数学符号的0~9)

模型实例化:

# 找到可以用于训练的 GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
#模型实例化
model = Net().to(device)
print(model)

优化器损失函数实例化(在模型训练的时候,如果出现过拟合或者欠拟合,导致实验效果不理想,可以更换优化器,实现对模型进行调参)

n_feature = 3*224*224 #输入层神经元数(特征数)
n_hidden = [128,64] #隐藏层神经元数
n_output = 5 #输出层神经元数(类别数)
model = Net()
# SGD: 随机梯度下降
optimizer = optim.Adagrad(model.parameters(), lr=learning_rate) 
# 针对分类问题的损失函数!
loss_func = nn.CrossEntropyLoss()

正式训练模型(打印相应的信息,以及给出模型集外测试的准确率曲线图)

#正式训练# 精度计算函数
def accuracy(outputs, labels):pred = torch.max(outputs, 1)[1]rights = pred.eq(labels).sum()  #统计模型中识别正确图片的个数return rights
"""
一轮训练函数
输入:当前训练轮数
"""
def train(epoch):for step, (data, targets) in enumerate(train_loader):# 网络前传 -> 计算损失 -> 清空梯度 -> 反向传播 -> 优化网络参数outputs = model(data)loss = loss_func(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()# 计算损失、训练集精度running_loss = loss.item()  #训练数据的损失率acc = 100 * accuracy(outputs, targets) / data.shape[0]   #训练数据的准确率if step % 35 == 34:  # 不想要每一次都出loss,浪费时间,选择每30次输出一个损失和准确率print('[%d, %5d]:loss and acc on train:  loss= %.3f , acc= %.2f %%' % (epoch + 1, step + 1, running_loss, acc))"""
一轮测试函数
输出:测试集的测试精度
"""
def test():correct = 0total = 0with torch.no_grad():  # 测试集不用算梯度for images, labels in test_loader:outputs = model(images)prediction = torch.max(outputs, 1)[1]  total += labels.size(0)  # 张量之间的比较运算correct += (prediction == labels).sum().item()acc = correct / total  #测试集的正确率,集外精度print('[%d / %d]: Accuracy on test set: %.1f %% ' % (epoch+1, EPOCH, 100 * acc))  # 求测试的准确率,正确数/总数return accif __name__ == '__main__':acc_list_test = []temp = 0for epoch in range(EPOCH):train(epoch) #调用训练轮acc_test = test() #调用测试轮acc_list_test.append(acc_test) #记录测试精度,方便打印if acc_test > temp: torch.save(model.state_dict(), 'flowers_model.pt') #保存最佳模型temp = acc_testplt.plot(acc_list_test)plt.xlabel('Epoch')plt.ylabel('Accuracy On TestSet')plt.show()

模型加载与实际运用:

if __name__ =='__main__':# 找到可以用于训练的 GPUdevice = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))#读取要预测的图片# img = "./rose.jpg"  # img="./dandelion.jpg"# img="./tulip.jpg"# img="./daisy.jpg"img="./sunflower.jpg"#格式转换        img = Image.open(img)plt.imshow(img)plt.show()img = my_transform(img).to(device)#加载模型model = Net().to(device)  #创建一个名为model的神经网络模型,并将其转移到指定的设备上(如:GPU)model.load_state_dict(torch.load('./flowers_model.pt')) #加载模型的参数状态字典,模型的状态字典通常包含了模型的权重和偏置等参数model.eval()    #把模型转为test模式img = img.unsqueeze(0)# 添加一个维度output = model(img)pred = torch.max(output, 1)[1]print(pred)if pred.item() == 0: print("daisy")elif pred.item() == 1:print("dandelion")elif pred.item() == 2:print("rose")elif pred.item() == 3:print("sunflower")elif pred.item() == 4:print("tulip")else: print("error")

我训练模型的结果如下:

 完整代码:

import os 
import torch
from PIL import Image
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from torchvision import transforms #pytorch中的图像预处理包:pip3 install torchvision
from torchvision import datasets,models
from torch import nn#导入神经网络包nn(可用来定义和运行神经网络)
from torch import optim#导入优化器包
train_datadir='./flowers/train/'  #指定数据集的文件路径
test_datadir='./flowers/test/'
batch_size =120  #小批量数据集的大小定义为40
learning_rate = 0.005  #梯度下降算法中用到的学习率(learning rate)。
#momentum = 0.5  #梯度下降算法中用到的冲量(momentum)
EPOCH = 10 #训练的轮数。
print("\n========原野小路============\n")my_transform = transforms.Compose([transforms.Resize((224,224)), #对图像大小进行调整transforms.ToTensor(),  #将图像转换为pytorch张量transforms.Normalize(mean=[0.485, 0.456, 0.406],  #对图像进行标准化处理,将每个像素的数值按照指定的均值和标准差调整,适应模型训练std=[0.229, 0.224, 0.225])])  train_data = datasets.ImageFolder(root=train_datadir,transform=my_transform)  #读取训练数据
test_data  = datasets.ImageFolder(root=test_datadir,transform=my_transform)  #读取测试数据集
#查看datasets.ImageFolder的输出
print(train_data.classes)  #类名List
print(train_data.class_to_idx) #类名和标签构成的字典:(class_name,class_index)
print(train_data.imgs[0]) #数据集元组构成的List:(文件名,标签)
print(len(train_data),len(test_data)) #打印训练集和测试集规模train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) #随机抽取,形成小批量训练数据集,shuffle表示是否打乱
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)  #顺序抽取,形成小批量测试数据集
for step, (data, targets) in enumerate(train_loader): #enumerate将一个可迭代对象组合为一个索引序列,同时列出数据和数据的索引。这句话中step是训练数据集的索引print(data.size())  #数torch.Size([30, 3, 224, 224]) ,通道为3表示彩色图片print(targets.size())  #小批量数据集为400break
"""
卷积运算 使用花卉数据集分类数据集
"""
class Net(nn.Module):def __init__(self): #没有传参super(Net, self).__init__()self.conv1 = nn.Sequential( #打包第一个卷积,池化nn.Conv2d(3, 30, kernel_size=5),  #kernel_size表示卷积核大小nn.ReLU(), #定义激活函数为relunn.MaxPool2d(kernel_size=2)  )self.conv2 = nn.Sequential(nn.Conv2d(30, 20, kernel_size=5),nn.ReLU(),nn.MaxPool2d(kernel_size=2))self.fc = nn.Sequential(  #打包全连接nn.Linear(20*53*53, 20),nn.ReLU(),nn.Linear(20, 5))def forward(self, x):# Xsize = x.size(0)x = self.conv1(x)  # 一层卷积层,一层池化层,一层激活层(图是先卷积后激活再池化,差别不大)x = self.conv2(x)  # 再来一次x = x.view(-1,20*53*53)  # flatten 变成全连接网络需要的输入 (batch, 20,4,4) ==> (batch,320), -1 此处自动算出的是320x = self.fc(x) #全连接return x  # 最后输出的是维度为10的,也就是(对应数学符号的0~9)
# 找到可以用于训练的 GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
#模型实例化
model = Net().to(device)
print(model)n_feature = 3*224*224 #输入层神经元数(特征数)
n_hidden = [128,64] #隐藏层神经元数
n_output = 5 #输出层神经元数(类别数)
model = Net()
# SGD: 随机梯度下降
optimizer = optim.Adagrad(model.parameters(), lr=learning_rate) 
# 针对分类问题的损失函数!
loss_func = nn.CrossEntropyLoss() #正式训练# 精度计算函数
def accuracy(outputs, labels):pred = torch.max(outputs, 1)[1]rights = pred.eq(labels).sum()  #统计模型中识别正确图片的个数return rights
"""
一轮训练函数
输入:当前训练轮数
"""
def train(epoch):for step, (data, targets) in enumerate(train_loader):# 网络前传 -> 计算损失 -> 清空梯度 -> 反向传播 -> 优化网络参数outputs = model(data)loss = loss_func(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()# 计算损失、训练集精度running_loss = loss.item()  #训练数据的损失率acc = 100 * accuracy(outputs, targets) / data.shape[0]   #训练数据的准确率if step % 35 == 34:  # 不想要每一次都出loss,浪费时间,选择每30次输出一个损失和准确率print('[%d, %5d]:loss and acc on train:  loss= %.3f , acc= %.2f %%' % (epoch + 1, step + 1, running_loss, acc))"""
一轮测试函数
输出:测试集的测试精度
"""
def test():correct = 0total = 0with torch.no_grad():  # 测试集不用算梯度for images, labels in test_loader:outputs = model(images)prediction = torch.max(outputs, 1)[1]  total += labels.size(0)  # 张量之间的比较运算correct += (prediction == labels).sum().item()acc = correct / total  #测试集的正确率,集外精度print('[%d / %d]: Accuracy on test set: %.1f %% ' % (epoch+1, EPOCH, 100 * acc))  # 求测试的准确率,正确数/总数return accif __name__ == '__main__':acc_list_test = []temp = 0for epoch in range(EPOCH):train(epoch) #调用训练轮acc_test = test() #调用测试轮acc_list_test.append(acc_test) #记录测试精度,方便打印if acc_test > temp: torch.save(model.state_dict(), 'flowers_model.pt') #保存最佳模型temp = acc_testplt.plot(acc_list_test)plt.xlabel('Epoch')plt.ylabel('Accuracy On TestSet')plt.show()

这篇关于利用深度学习解决生活中实际问题——卷积网络实现花卉分类识别(附带数据集,完整代码在最后)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802971

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2