【Python】科研代码学习:八 FineTune PretrainedModel (用 trainer,用 script);LLM文本生成

本文主要是介绍【Python】科研代码学习:八 FineTune PretrainedModel (用 trainer,用 script);LLM文本生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python】科研代码学习:八 FineTune PretrainedModel [用 trainer,用 script] LLM文本生成

  • 自己整理的 HF 库的核心关系图
  • 用 trainer 来微调一个预训练模型
  • 用 script 来做训练任务
  • 使用 LLM 做生成任务
    • 可能犯的错误,以及解决措施

自己整理的 HF 库的核心关系图

  • 根据前面几期,自己整理的核心库的使用/继承关系
    在这里插入图片描述

用 trainer 来微调一个预训练模型

  • HF官网API:FT a PretrainedModel
    今天讲讲FT训练相关的内容吧
    这里就先不提用 keras 或者 native PyTorch 微调,直接看一下用 trainer 微调的基本流程
  • 第一步:加载数据集和数据集预处理
    使用 datasets 进行加载 HF 数据集
from datasets import load_datasetdataset = load_dataset("yelp_review_full")

另外,需要用 tokenizer 进行分词。自定义分词函数,然后使用 dataset.map() 可以把数据集进行分词。

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")def tokenize_function(examples):return tokenizer(examples["text"], padding="max_length", truncation=True)tokenized_datasets = dataset.map(tokenize_function, batched=True)

也可以先选择其中一小部分的数据单独拿出来,做测试或者其他任务

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
  • 第二步,加载模型,选择合适的 AutoModel 或者比如具体的 LlamaForCausalLM 等类。
    使用 model.from_pretrained() 加载
from transformers import AutoModelForSequenceClassificationmodel = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)
  • 第三步,加载 / 创建训练参数 TrainingArguments
from transformers import TrainingArgumentstraining_args = TrainingArguments(output_dir="test_trainer")
  • 第四步,指定评估指标。trainer 在训练的时候不会去自动评估模型的性能/指标,所以需要自己提供一个
    ※ 这个 evaluate 之前漏了,放后面学,这里先摆一下 # TODO
import numpy as np
import evaluatemetric = evaluate.load("accuracy")
  • 第五步,使用 trainer 训练,提供之前你创建好的:
    model模型,args训练参数,train_dataset训练集,eval_dataset验证集,compute_metrics评估方法
trainer = Trainer(model=model,args=training_args,train_dataset=small_train_dataset,eval_dataset=small_eval_dataset,compute_metrics=compute_metrics,
)
trainer.train()
  • 完整代码,请替换其中的必要参数来是配置自己的模型和任务
from datasets import load_dataset
from transformers import (LlamaTokenizer,LlamaForCausalLM,TrainingArguments,Trainer,)
import numpy as np
import evaluatedef tokenize_function(examples):return tokenizer(examples["text"], padding="max_length", truncation=True)metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):logits, labels = eval_predpredictions = np.argmax(logits, axis=-1)return metric.compute(predictions=predictions, references=labels)"""
Load dataset, tokenizer, model, training args
preprosess into tokenized dataset
split training dataset and eval dataset
"""
dataset = load_dataset("xxxxxxxxxxxxxxxxxxxx")tokenizer = LlamaTokenizer.from_pretrained("xxxxxxxxxxxxxxxxxxxxxxxxxx")
tokenized_datasets = dataset.map(tokenize_function, batched=True)small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))model = LlamaForCausalLM.from_pretrained("xxxxxxxxxxxxxxx")training_args = TrainingArguments(output_dir="xxxxxxxxxxxxxx")"""
define metrics
set trainer and train
"""trainer = Trainer(model=model,args=training_args,train_dataset=small_train_dataset,eval_dataset=small_eval_dataset,compute_metrics=compute_metrics,
)trainer.train()

用 script 来做训练任务

  • 我们在很多项目中,都会看到启动脚本是一个 .sh 文件,一般里面可能会这么写:
python examples/pytorch/summarization/run_summarization.py \--model_name_or_path google-t5/t5-small \--do_train \--do_eval \--dataset_name cnn_dailymail \--dataset_config "3.0.0" \--source_prefix "summarize: " \--output_dir /tmp/tst-summarization \--per_device_train_batch_size=4 \--per_device_eval_batch_size=4 \--overwrite_output_dir \--predict_with_generate
  • 或者最近看到的一个
OUTPUT_DIR=${1:-"./alma-7b-dpo-ft"}
pairs=${2:-"de-en,cs-en,is-en,zh-en,ru-en,en-de,en-cs,en-is,en-zh,en-ru"}
export HF_DATASETS_CACHE=".cache/huggingface_cache/datasets"
export TRANSFORMERS_CACHE=".cache/models/"
# random port between 30000 and 50000
port=$(( RANDOM % (50000 - 30000 + 1 ) + 30000 ))accelerate launch --main_process_port ${port} --config_file configs/deepspeed_train_config_bf16.yaml \run_cpo_llmmt.py \--model_name_or_path haoranxu/ALMA-13B-Pretrain \--tokenizer_name haoranxu/ALMA-13B-Pretrain \--peft_model_id  haoranxu/ALMA-13B-Pretrain-LoRA \--cpo_scorer kiwi_xcomet \--cpo_beta 0.1 \--use_peft \--use_fast_tokenizer False \--cpo_data_path  haoranxu/ALMA-R-Preference \--do_train \--language_pairs ${pairs} \--low_cpu_mem_usage \--bf16 \--learning_rate 1e-4 \--weight_decay 0.01 \--gradient_accumulation_steps 1 \--lr_scheduler_type inverse_sqrt \--warmup_ratio 0.01 \--ignore_pad_token_for_loss \--ignore_prompt_token_for_loss \--per_device_train_batch_size 2 \--evaluation_strategy no \--save_strategy steps \--save_total_limit 1 \--logging_strategy steps \--logging_steps 0.05 \--output_dir ${OUTPUT_DIR} \--num_train_epochs 1 \--predict_with_generate \--prediction_loss_only \--max_new_tokens 256 \--max_source_length 256 \--seed 42 \--overwrite_output_dir \--report_to none \--overwrite_cache 
  • 玛雅,这么多 --xxx ,看着头疼,也不知道怎么搞出来这么多参数作为启动文件的。
    这种就是通过 script 启动任务了
  • github:transformers/examples
    看一下 HF github 给的一些任务的 examples 学习例子,就会发现
    main 函数中,会有这样的代码
    这个就是通过 argparser 来获取参数
    貌似还有 parserHfArgumentParser,这些都可以打包解析参数,又是挖个坑 # TODO
    这样的话,就可以通过 .sh 来在启动脚本中提供相关参数了
def main():parser = argparse.ArgumentParser()parser.add_argument("--model_type",default=None,type=str,required=True,help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),)parser.add_argument("--model_name_or_path",default=None,type=str,required=True,help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()),)parser.add_argument("--prompt", type=str, default="")parser.add_argument("--length", type=int, default=20)parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped")# ....... 太长省略
  • 用脚本启动还有什么好处呢
    可以使用 accelerate launch run_summarization_no_trainer.py 进行加速训练
    再给 accelerate 挖个坑 # TODO
  • 所以,在 .sh script 启动脚本中具体能提供哪些参数,取决于这个入口 .py 文件的 parser 打包解析了哪些参数,然后再利用这些参数做些事情。

使用 LLM 做生成任务

  • HF官网API:Generation with LLMs
    官方都特地给这玩意儿单独开了一节,就说明其中有些很容易踩的坑…
  • 对于 CausalLM,首先看一下 next token 的生成逻辑:输入进行分词与嵌入后,通过多层网络,然后进入到一个LM头,最终获得下一个 token 的概率预测
  • 那么生成句子的逻辑,就是不断重复这个过程,获得 next token 概率预测后,通过一定的算法选择下一个 token,然后再重复该操作,就能生成整个句子了。
  • 那什么时候停止呢?要么是下一个token选择了 eos,要么是到达了之前定义的 max token length
    在这里插入图片描述
  • 接下来看一下代码逻辑
  • 第一步,加载模型
    device_map:控制模型加载在 GPUs上,不过一般我会使用 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" 以及 os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"
    load_in_4bit 设置加载量化
from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
)
  • 第二步,加载分词器和分词
    记得分词的向量需要加载到 cuda
from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
  • 但这个是否需要分词取决于特定的 model.generate() 方法的参数
    就比如 disc 模型的 generate() 方法的参数为:
    也就是说,我输入的 prompt 只用提供字符串即可,又不需要进行分词或者分词器了。
    在这里插入图片描述
  • 第三步,通常的 generate 方法,输入是 tokenized 后的数组,然后获得 ids 之后再 decode 变成对应的字符结果
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
  • 当然我也可以批处理,一次做多个操作,批处理需要设置pad_token
tokenizer.pad_token = tokenizer.eos_token  # Most LLMs don't have a pad token by default
model_inputs = tokenizer(["A list of colors: red, blue", "Portugal is"], return_tensors="pt", padding=True
).to("cuda")
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)

可能犯的错误,以及解决措施

  • 控制输出句子的长度
    需要在 generate 方法中提供 max_new_tokens 参数
model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")# By default, the output will contain up to 20 tokens
generated_ids = model.generate(**model_inputs)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# Setting `max_new_tokens` allows you to control the maximum length
generated_ids = model.generate(**model_inputs, max_new_tokens=50)
tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
  • 生成策略修改
    有时候默认使用贪心策略来获取 next token,这个时候容易出问题(循环生成等),需要设置 do_sample=True
    在这里插入图片描述

  • pad 对齐方向
    如果输入不等长,那么会进行pad操作
    由于默认是右侧padding,而LLM在训练时没有学会从pad_token接下来的生成策略,所以会出问题
    所以需要设置 padding_side="left![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6084ff91d85c49e28a4faf498b8e5997.png) "
    在这里插入图片描述

  • 如果没有使用正确的 prompt(比如训练时的prompt格式),得到的结果就会不如预期
    (in one sitting = 一口气) (thug = 暴徒)
    这里需要参考 HF对话模型的模板 以及 HF LLM prompt 指引
    在这里插入图片描述
    比如说,QA的模板就像这样。
    更高级的还有 few shotCOT 技巧。

torch.manual_seed(4)
prompt = """Answer the question using the context below.
Context: Gazpacho is a cold soup and drink made of raw, blended vegetables. Most gazpacho includes stale bread, tomato, cucumbers, onion, bell peppers, garlic, olive oil, wine vinegar, water, and salt. Northern recipes often include cumin and/or pimentón (smoked sweet paprika). Traditionally, gazpacho was made by pounding the vegetables in a mortar with a pestle; this more laborious method is still sometimes used as it helps keep the gazpacho cool and avoids the foam and silky consistency of smoothie versions made in blenders or food processors.
Question: What modern tool is used to make gazpacho?
Answer:
"""sequences = pipe(prompt,max_new_tokens=10,do_sample=True,top_k=10,return_full_text = False,
)for seq in sequences:print(f"Result: {seq['generated_text']}")

这篇关于【Python】科研代码学习:八 FineTune PretrainedModel (用 trainer,用 script);LLM文本生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802464

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import