ChatGLM3 自己训练微调制作数据代码,与训练、训练完成后模型合并、解译代码完整版

本文主要是介绍ChatGLM3 自己训练微调制作数据代码,与训练、训练完成后模型合并、解译代码完整版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGLM3 自己训练微调制作数据代码,与训练完成后模型合并解译代码

import jsonkeyword = '这年轻人'# 摘自百度百科
description = "这年轻人,男,1993年出生于陕西省湖北市潼关县。2015年毕业于中国背景大学。2016年加入西安旧东方,当选(旧东方)当时最年轻的英语教研主管;2019年加入旧东方在线,是高三英语名师并成为高三英语学科最年轻的负责人,被称为“中关村王杰伦”。现是东方甄选高级合伙人、旧东方教育科技集团董事长文化助理,兼任新东方文旅集团副总裁。"#对 prompt 使用一些简单的数据增强的方法,以便更好地收敛。
def get_prompt_list(keyword):return [f'{keyword}', f'你知道{keyword}吗?',f'{keyword}是谁?',f'介绍一下{keyword}',f'你听过{keyword}吗?',f'谁是{keyword}?',f'{keyword}是?',f'你认识{keyword}吗?',f'{keyword}的资料',f'{keyword}简介']# ChatGLM3 自己训练微调制作数据代码,与训练完成后模型合并解译代码# 对话数据格式
data = [{"conversations": [{"role": "system","content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown."},{"role": "user","content": x},{"role": "assistant","content": description}]}for x in get_prompt_list(keyword)
]# 保存到 formatted_data/my_data_qa.jsonl
with open("formatted_data/my_data_qa.jsonl", "w") as f:for e in data:f.write(json.dumps(e, ensure_ascii=False) + "\n")

模型合并代码

import torch
from peft import PeftModel
from transformers import AutoTokenizer, AutoModel
#加载原模型
base_model = '/media/DATA/XXX/large_model/weights'
base_model = AutoModel.from_pretrained(base_model, trust_remote_code=True).cuda(3)
#加载微调的模型
lora_model_path = '/media/DATA/XXX/large_model/Chat_weitiao/ChatGLM3/finetune_demo/output/checkpoint-3000'
lora_model = PeftModel.from_pretrained(base_model,lora_model_path, torch_dtype=torch.float16)
lora_model.to("cpu")
#合并
merged_model = lora_model.merge_and_unload()
#合并的模型存储
new_model_directory = '/media/DATA/XXX/large_model/Chat_weitiao/ChatGLM3/finetune_demo/output/fintrue_chatglm3'
merged_model.save_pretrained(new_model_directory, max_shard_size="2048MB", safe_serialization=True)

后推理代码

from transformers import AutoModel, AutoTokenizer  # 导入transformers库的AutoModel和AutoTokenizer#加载模型
new_model_directory = '/media/DATA/XXX/large_model/Chat_weitiao/ChatGLM3/finetune_demo/output/fintrue_chatglm3'
tokenizer = AutoTokenizer.from_pretrained(new_model_directory, trust_remote_code=True)
model = AutoModel.from_pretrained(new_model_directory, trust_remote_code=True).cuda(3)
model.eval()
#输入
#instruction = "你现在是一个信息抽取模型,请你帮我抽取出关系内容为\"性能故障\", \"部件故障\", \"组成\"和 \"检测工具\"的相关三元组,三元组内部用\"_\"连接,三元组之间用\\n分割。文本:"
input = "被称为“中关村周杰伦"
#验证
response, _ = model.chat(tokenizer, input, history=None)
print(response)

第二种

#!/usr/bin/env python
# -*- coding: utf-8 -*-from pathlib import Path
from typing import Annotated, Unionimport typer
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (AutoModelForCausalLM,AutoTokenizer,PreTrainedModel,PreTrainedTokenizer,PreTrainedTokenizerFast,
)ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]app = typer.Typer(pretty_exceptions_show_locals=False)def _resolve_path(path: Union[str, Path]) -> Path:return Path(path).expanduser().resolve()def load_model_and_tokenizer(model_dir: Union[str, Path]) -> tuple[ModelType, TokenizerType]:model_dir = _resolve_path(model_dir)if (model_dir / 'adapter_config.json').exists():model = AutoPeftModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, device_map='auto')tokenizer_dir = model.peft_config['default'].base_model_name_or_pathelse:model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, device_map='auto')tokenizer_dir = model_dirtokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, trust_remote_code=True)return model, tokenizer@app.command()
def main(model_dir: Annotated[str, typer.Argument(help='')],prompt: Annotated[str, typer.Option(help='')],
):model, tokenizer = load_model_and_tokenizer(model_dir)response, _ = model.chat(tokenizer, prompt)print(response)if __name__ == '__main__':app()

训练解译指令

CUDA_VISIBLE_DEVICES=3  python finetune_hf.py formatted_data/ /media/DATA/zhulifu/large_model/weights/ configs/lora.yaml
CUDA_VISIBLE_DEVICES=2  python finetune_hf.py formatted_data/ /media/DATA/zhulifu/large_model/weights/ configs/ptuning_v2.yaml

训练代码

# -*- coding: utf-8 -*-import dataclasses as dc
import functools
from collections.abc import Callable, Mapping, Sequence
from pathlib import Path
from typing import Annotated, Any, Optional, Unionimport jieba
import numpy as np
import ruamel.yaml as yaml
import torch
import typer
from datasets import Dataset, DatasetDict, NamedSplit, Split, load_dataset
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
from peft import (PeftConfig,PeftModelForCausalLM,get_peft_config,get_peft_model
)
from rouge_chinese import Rouge
from torch import nn
from transformers import (AutoModelForCausalLM,AutoTokenizer,EvalPrediction,GenerationConfig,PreTrainedModel,PreTrainedTokenizer,PreTrainedTokenizerFast,Seq2SeqTrainingArguments

这篇关于ChatGLM3 自己训练微调制作数据代码,与训练、训练完成后模型合并、解译代码完整版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802330

相关文章

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获