C++数据结构之平衡二叉搜索树(一)——AVL的实现(zig与zag/左右双旋/3+4重构)

2024-03-11 22:40

本文主要是介绍C++数据结构之平衡二叉搜索树(一)——AVL的实现(zig与zag/左右双旋/3+4重构),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 00.BBST——平衡二叉搜索树
  • 01.AVL树
  • 02.AVL的插入
      • 2.1单旋——zig 与 zag
      • 2.2插入节点后的单旋实例
      • 2.3手玩小样例
      • 2.4双旋实例
      • 2.5小结
  • 03.AVL的删除
      • 3.1单旋删除
      • 3.2双旋删除
      • 3.3小结
  • 04.3+4重构
  • 05.综合评价AVL
      • 5.1优点
      • 5.2缺点
  • 06.代码
      • 注意
      • 插入算法
      • 删除算法
      • 完整代码:AVL.h

00.BBST——平衡二叉搜索树

本文是介绍众多平衡二叉搜索树(BBST)的第一篇——介绍AVL树。故先来引入BBST的概念。由于上一篇介绍的二叉搜索树(BST)在极度退化的情况下,十分不平衡,不平衡到只朝一侧偏,成为一条链表,复杂度可达 O ( n ) O(n) O(n),所以我们要在“平衡”方面做一些约束,以防我们的树结构退化得那么严重。

具体来说,含 n n n个节点,高度为 h h h的BST,若满足 h = O ( l o g 2 n ) h=O(log_2 n) h=O(log2n),则称为称为平衡二叉搜索树。

01.AVL树

AVL树是一种BBST(稍后会证明)。它约束自己是否平衡,主要靠一个指标——平衡因子。定义:平衡因子=左子树高度-右子树高度。如果满足 − 2 < 全部平衡因子 < 2 -2<全部平衡因子<2 2<全部平衡因子<2,则该AVL树处于平衡状态;否则,需要靠一系列措施,将其恢复平衡。

首先先证明AVL树满足BBST的要求,即 h = O ( l o g 2 n ) h=O(log_2 n) h=O(log2n)(下式)。我们可转而证明n=Ω(Φh)(即,AVL的节点数不会太少)
在这里插入图片描述

[结论] 高度为 h h h的AVL Tree 至少有 f i b ( ( h + 3 ) − 1 fib((h+3)-1 fib((h+3)1 个节点
[证明]
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

02.AVL的插入

插入一个节点会导致一串祖先的失衡,删除一个节点至多导致一个祖先失衡。但是,通过后续代码就可发现,删除节点比插入节点复杂的多。原因是,插入节点只要调整好了一处,这条路径上的所有祖先都可平衡,复杂度是O(1)。而删除节点是,调整好了一处平衡,另一处就会不平衡,自下而上层层调整,复杂度是O(n)

2.1单旋——zig 与 zag

zig 与 zag 分别对应右单旋和左单旋。单旋的操作改变的是两个节点的相对位置。改变的是三条线:一上一下一子树。新树根上行指向原根,新树根原子树给到原根。如下图,V到Y那去,Y到C那去。

在这里插入图片描述

2.2插入节点后的单旋实例

在下图处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈一条线,而非“之”字,所以用单旋调整(之字形对应双旋)。具体来说,对g左单旋。
在这里插入图片描述

2.3手玩小样例

例题:将1,2,3,4,5,6依次插入空的AVL Tree,最终AVL Tree长成什么样?

[过程]首先正常插入1,2;插入3时,1是第一个发现不平衡的节点,zag(1),即对1进行左单旋,成功解决;正常插入4
在这里插入图片描述

插入5时,3是第一个发现不平衡的节点,zag(3),即对3进行左单旋,成功解决
在这里插入图片描述
插入6时,2是第一个发现不平衡的节点,zag(2),即对2进行左单旋,成功解决
在这里插入图片描述

2.4双旋实例

双旋的操作改变的是三个节点的相对位置。分为两种情况——zig-zag与zag-zig。

在下图处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈“之”字,所以用双旋。具体来说,先zig§,再zag(g).
在这里插入图片描述

2.5小结

AVL树中插入节点引发失衡,经旋转调整后重新平衡,此时包含节点g,p,v的子树高度是不变的子树高度复原,更高祖先也必平衡,全树复衡。故在AVL树中修正插入节点引发的失衡不会出现失衡传播。

03.AVL的删除

删除一个节点至多导致一个祖先失衡。

3.1单旋删除

在这里插入图片描述

3.2双旋删除

在这里插入图片描述

3.3小结

AVL树中删除节点引发失衡,经旋转调整后重新平衡,此时包含节点g,p,v的子树高度有可能不变也有可能减小1,故在AVL树中修正删除节点引发的失衡有可能出现失衡传播。

04.3+4重构

通过观察以上插入和删除的结果示意图,发现结构是一样的——三个节点按顺序呈三角形,四个子树按原来的顺序分别挂在两个孩子节点的下边。(如下图)
在这里插入图片描述

那我们就不必关注具体的技巧了,而是将三个节点和四个子树拆开,像暴力组装魔方那样(先拆散)拼上。

template <typename T>
BinNode<T> * BST<T>::connect34(BinNode<T> * a, BinNode<T> * b, BinNode<T> * c, BinNode<T> * T1, BinNode<T> * T2, BinNode<T> *T3, BinNode<T> * T4)
{b->left = a;  b->right = c;a->left = T1; a->right = T2;c->left = T3; c->right = T4;a->parent = b; c->parent = b;if (T1) T1->parent = a;if (T2) T2->parent = a;if (T3) T3->parent = c;if (T4) T4->parent = c;a->updateHigh(); b->updateHigh(); c->updateHigh();return b;
}template <typename T>
BinNode<T> * BST<T>::rotateAt(BinNode<T> * v)
{BinNode<T> * p = v->parent;BinNode<T> * g = p->parent;BinNode<T> * T1, *T2, *T3, *T4, *a, *b, *c;if (p == g->left && v == p->left){a = v; b = p; c = g;T1 = v->left; T2 = v->right; T3 = p->right; T4 = g->right;}else if (p == g->left && v == p->right){a = p; b = v; c = g;T1 = p->left; T2 = v->left; T3 = v->right; T4 = g->right;}	else if (p == g->right && v == p->left){a = g; b = v; c = p;T1 = g->left; T2 = v->left; T3 = v->right; T4 = p->right;}else{a = g; b = p; c = v;T1 = g->left; T2 = p->left; T3 = v->left; T4 = v->right;}b->parent = g->parent; //向上链接return connect34(a, b, c, T1, T2, T3, T4);}

05.综合评价AVL

5.1优点

  1. 查找、插入、删除,最坏时间复杂度为 O ( l o g n ) O(logn) O(logn)
  2. O ( n ) O(n) O(n)的存储空间

5.2缺点

  1. 需要额外维护高度或平衡因子这一指标(后续Splay Tree可改善这一问题)
  2. 删除操作后,最多需旋转 Ω ( l o g n ) \Omega(logn) Ω(logn)
  3. 单次动态调整后,全树拓扑结构的变化量可能高达 Ω ( l o g n ) \Omega(logn) Ω(logn) (RedBlack Tree可缩到 O ( 1 ) O(1) O(1)

谢谢观看~

06.代码

注意

  1. fromParentTo()是根节点的情况
  2. connect34()向上链接别忘

插入算法

为什么不用现成的BST::insert(val)? BST::insert自带更新一串高度,旋转调整之后还得把这一串更新回来。

BinNode<T> * insert(T const & val){BinNode<T> * & X = BST<T>::search(val);if (!X){X = new BinNode<T>(val, BST<T>::hot); BinTree<T>::size++;BinNode<T> * X_copy = X;while (X_copy && AvlBalanced(X_copy)){X_copy->updateHigh();X_copy = X_copy->parent;}if (X_copy) //说明是因为遇到了不平衡节点才退出了while,现在解决不平衡问题{BinNode<T> * & tmp = BinTree<T>::fromParentTo(X_copy);tmp = BST<T>::rotateAt(tallerChild(tallerChild(X_copy))); // 内部自带单个节点更新高度}return X;}}

删除算法

受限于BST::remove的返回值仅仅是bool,所以用底层的removeAt. removeAt的返回值是接替者,但有时,接替者是NULL。还好有BST::hot,存放被删节点的父亲。实际上,BST::remove的更新高度也是从hot开始的

bool remove(T const & val) {BinNode<T> * & X = BST<T>::search(val);if (!X) return false;else{BST<T>::removeAt(X, BST<T>::hot);BinTree<T>::size--;// 与insert不同的是,remove可能要调整很多次for (BinNode<T> * g = BST<T>::hot; g; g = g->parent){int i = BF(g);if (!AvlBalanced(g)){BinNode<T> * & tmp = BinTree<T>::fromParentTo(g);tmp = BST<T>::rotateAt(tallerChild(tallerChild(g))); }else g->updateHigh();}return true;}}

完整代码:AVL.h

# pragma once
# include "BST.h"# define BF(x) (int)(getHigh(x->left) - getHigh(x->right))
# define AvlBalanced(x)  ( -2 < BF(x) && BF(x) < 2 )template <typename T>
BinNode<T> * tallerChild(BinNode<T> * x)
{return  (getHigh(x->left) > getHigh(x->right)) ? x->left : x->right;
}template <typename T>
class AVL :public BST<T>
{public:bool remove(T const & val) {BinNode<T> * & X = BST<T>::search(val);if (!X)  return false;else{BST<T>::removeAt(X, BST<T>::hot);BinTree<T>::size--;// (可优化:直到到某祖先,高度不变,停止上行。那就要在刚刚更新高度时记录中途退出的位置,以便在此处判断)for (BinNode<T> * g = BST<T>::hot; g; g = g->parent){int i = BF(g);if (!AvlBalanced(g)){BinNode<T> * & tmp = BinTree<T>::fromParentTo(g);tmp = BST<T>::rotateAt(tallerChild(tallerChild(g))); // 内部自带单个节点更新高度}else g->updateHigh();}return true;}}BinNode<T> * insert(T const & val){BinNode<T> * & X = BST<T>::search(val);if (!X){X = new BinNode<T>(val, BST<T>::hot); //这一句话将两个关系连接BinTree<T>::size++;BinNode<T> * X_copy = X;while (X_copy && AvlBalanced(X_copy)){X_copy->updateHigh();X_copy = X_copy->parent;}if (X_copy) //说明是因为遇到了不平衡节点才退出了while,现在解决不平衡问题{BinNode<T> * & tmp = BinTree<T>::fromParentTo(X_copy);tmp = BST<T>::rotateAt(tallerChild(tallerChild(X_copy))); // 内部自带单个节点更新高度}return X;}}
};

感谢观看~

附上前传:
C++数据结构之BinaryTree(二叉树)的实现
C++数据结构之BST(二叉搜索树)的实现

这篇关于C++数据结构之平衡二叉搜索树(一)——AVL的实现(zig与zag/左右双旋/3+4重构)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799313

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time