【目标检测算法实现之yolov5】二、使用yolov5在VisDrone2019数据集上训练并测试

本文主要是介绍【目标检测算法实现之yolov5】二、使用yolov5在VisDrone2019数据集上训练并测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0.准备
    • Yolov5环境配置
    • 下载预训练权重
    • VisDrone数据集准备
      • 数据集下载
      • 数据集处理
  • 1.训练
    • 修改配置文件
      • 修改VisDrone.yaml文件
      • 修改yolov5s.yaml文件(若训练其他yolo网络修改相应的yaml文件即可)
      • 修改train.py文件
    • 开始训练
  • 2.验证
    • 修改配置文件
    • 开始测试

0.准备

Yolov5环境配置

参考上一篇博客,如下:将YOLOv5成功部署到远程服务器上。配置YOLOV5的环境
【目标检测算法实现】——YOLOv5部署到远程服务器上

下载预训练权重

此外,还需下载预训练权重,根据自己需要下载相应的预训练权重版本
YOLOv5的官方代码中,给出了四种版本的目标检测网络,分别是YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个模型。
YOLOv5s网络最小,速度最快,AP精度也最低。但如果检测的大目标为主的场景,追求速度,那么这个模型也是一个很好的选择。
其他的三种网络,在此基础上不断的加深加宽网络,AP精度也不断提升,但速度的消耗也在不断增加。
其中四种网络的预训练权重下载链接如下:https://github.com/ultralytics/yolov5/releases/tag/v7.0
页面拉倒最下面的Assets
在这里插入图片描述
找到需要的预训练权重
在这里插入图片描述

在yolov5-master文件夹下新建一个weights文件夹,放入下载所需要的权重,笔者使用的是yolov5s,因此下载的是yolov5s.pt权重文件

下载好的权重文件放在yolov5-maser/weights下面
在这里插入图片描述

VisDrone数据集准备

数据集下载

github链接上下载:官方链接
下载Task1:Object Detectino in Images下面的四个VisDrone-DET dataset数据集
在这里插入图片描述
也可以在我的百度网盘链接里下载:
链接:https://pan.baidu.com/s/18TYcaRdJI7jF55c0ZlI3LA?pwd=ef7n
提取码:ef7n

下载好zip文件后,使用winscp将zip文件传输到远程服务器上。
在服务器上进入到zip文件所在的文件夹中使用unzip命令解压zip文件。
如: unzip VisDrone2019-DET-val.zip

数据集处理

新版本的yolov5中已经集成了训练visdrone数据集的配置文件,其中附带了数据集的处理方式,主要是labels的生成,可以在yolov5-master下面新建一个visdrone2yolov5.py文件。

from utils.general import download, os, Path
def visdrone2yolo(dir):from PIL import Imagefrom tqdm import tqdmdef convert_box(size, box):# Convert VisDrone box to YOLO xywh boxdw = 1. / size[0]dh = 1. / size[1]return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh(dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directorypbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')for f in pbar:img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).sizelines = []with open(f, 'r') as file:  # read annotation.txtfor row in [x.split(',') for x in file.read().strip().splitlines()]:if row[4] == '0':  # VisDrone 'ignored regions' class 0continuecls = int(row[5]) - 1  # 类别号-1box = convert_box(img_size, tuple(map(int, row[:4])))lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:fl.writelines(lines)  # write label.txt
dir = Path('/home/huaxiang/yolov5/datasets/VisDrone2019')  # datasets文件夹下Visdrone2019文件夹目录
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels

正确执行代码后,会在’VisDrone2019-DET-train’, ‘VisDrone2019-DET-val’, 'VisDrone2019-DET-test-dev三个文件夹内新生成labels文件夹,用以存放将VisDrone数据集处理成YoloV5格式后的数据标

1.训练

修改配置文件

修改VisDrone.yaml文件

记事本或notepad++打开yolov5/yolov5-master/data文件夹下的VisDrone.yaml文件,将其中path参数修改为VisDrone2019文件夹所在的路径。
在这里插入图片描述

修改yolov5s.yaml文件(若训练其他yolo网络修改相应的yaml文件即可)

记事本或notepad++打开yolov5/yolov5-master/models文件夹下的yolov5m.yaml文件,将其中nc参数修改为VisDrone2019数据集训练的类别,即nc:10。
在这里插入图片描述

修改train.py文件

在yolov5/yolov5-master下的train.py文件,需要修改几个default参数
主要更改了–weights、–cfg、–data、–epoch以及–batch-size的默认参数
在这里插入图片描述


def parse_opt(known=False):parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default= 'weights/yolov5s.pt', help='initial weights path')parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml' , help='model.yaml path')parser.add_argument('--data', type=str, default= 'data/VisDrone.yaml', help='dataset.yaml path')# parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')# parser.add_argument('--cfg', type=str, default='', help='model.yaml path')# parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')parser.add_argument('--epochs', type=int, default=10, help='total training epochs')  # 100parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')  # 16parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')parser.add_argument('--noval', action='store_true', help='only validate final epoch')parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')parser.add_argument('--noplots', action='store_true', help='save no plot files')parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')parser.add_argument('--name', default='exp', help='save to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--quad', action='store_true', help='quad dataloader')parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')parser.add_argument('--seed', type=int, default=0, help='Global training seed')parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')# Logger argumentsparser.add_argument('--entity', default=None, help='Entity')parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')return parser.parse_known_args()[0] if known else parser.parse_args()

开始训练

运行train.py文件,即开始训练。
在训练的过程中会产生过程文件及训练模型,会保存在runs/文件夹中

2.验证

修改配置文件

在yolov5/yolov5-master下的val.py文件,需要修改几个default参数
主要更改了–weights、–data、–epoch以及–batch-size的默认参数

weights更改为自己训练好的权重
data修改为VisDrone数据集
batch-size我改为16

def parse_opt():parser = argparse.ArgumentParser()parser.add_argument('--data', type=str, default='data/VisDrone.yaml', help='dataset.yaml path')parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp9/weights/best.pt', help='model path(s)')# parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')# parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')parser.add_argument('--batch-size', type=int, default=16, help='batch size') # 32parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')parser.add_argument('--task', default='val', help='train, val, test, speed or study')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--verbose', action='store_true', help='report mAP by class')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')parser.add_argument('--name', default='exp', help='save to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')opt = parser.parse_args()opt.data = check_yaml(opt.data)  # check YAMLopt.save_json |= opt.data.endswith('coco.yaml')opt.save_txt |= opt.save_hybridprint_args(vars(opt))return opt

若不想修改配置文件,可直接通过以下命令运行

python test.py --weights runs/train/exp9/weights/best.pt --data VisDrone.yaml

开始测试

将要运行的文件Script path 改为val.py

在这里插入图片描述
直接运行val.py文件即可。
我运行的结果如下:
在这里插入图片描述

这篇关于【目标检测算法实现之yolov5】二、使用yolov5在VisDrone2019数据集上训练并测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/794601

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand