Pytorch学习 day08(最大池化层、非线性激活层、正则化层、循环层、Transformer层、线性层、Dropout层)

本文主要是介绍Pytorch学习 day08(最大池化层、非线性激活层、正则化层、循环层、Transformer层、线性层、Dropout层),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最大池化层

  • 最大池化,也叫上采样,是池化核在输入图像上不断移动,并取对应区域中的最大值,目的是:在保留输入特征的同时,减小输入数据量,加快训练。
  • 参数设置如下:
    • kernel_size:池化核的高宽(整数或元组),整数时表示高宽都为该整数,元组时表示分别在水平和垂直方向上的长度。
    • stride:池化核每次移动的步长(整数或元组),整数时表示在水平和垂直方向上使用相同的步长。元组时分别表示在水平和垂直方向上的步长。默认为池化核的高宽。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
    • dilation:卷积核内部元素之间的距离,空洞卷积,如图:
      在这里插入图片描述
    • ceil_mode:True表示ceil模式,即向上取整,保留未满部分。False表示floor模式,即向下取整,舍去未满部分。默认为False,如图:
      在这里插入图片描述
    • 如下是示意图:
      在这里插入图片描述
  • 以下是代码实现:
    • 注意:部分版本的MaxPool2d不支持int类型,所以需要指定数据类型为浮点数
import torchinput = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)  # 由于部分版本的MaxPool2d不支持int类型,所以这里需要指定数据类型为float32  input = torch.reshape(input, (-1, 1, 5, 5)) # 将input从二维张量变成(N, C, H, W)的四维张量
print(input.shape)class Tudui(torch.nn.Module):def __init__(self):super().__init__()self.pool1 = torch.nn.MaxPool2d(kernel_size=3, ceil_mode=True)  # 最大池化层,池化核大小3*3,向上取整def forward(self, input):output = self.pool1(input)return outputtudui = Tudui()
output = tudui(input)
print(output)# 输出结果为
# torch.Size([1, 1, 5, 5])
# tensor([[[[2., 3.],
#           [5., 1.]]]])
  • 同样可以通过tensorboard进行展示输入输出结果,代码如下:
    • 由于最大池化层不会改变channel,所以不需要对输出进行reshape()操作
import torch
import torchvision
from torch.utils.tensorboard import SummaryWritertest_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=False, num_workers=0)class Tudui(torch.nn.Module):def __init__(self):super().__init__()self.pool1 = torch.nn.MaxPool2d(kernel_size=3, ceil_mode=True)  # 最大池化层,池化核大小3*3,向上取整def forward(self, input):output = self.pool1(input)return outputtudui = Tudui()writer = SummaryWriter("logs")  # 创建一个SummaryWriter对象,指定日志文件保存路径
step = 0
for data in test_loader:imgs, targets = data    # 获取输入数据outputs = tudui(imgs)   # 调用网络模型进行前向传播writer.add_images("input", imgs, step)  # 将输入数据imgs写入日志文件# 由于最大池化层不会改变通道数,所以不需要对outputs进行reshape()操作writer.add_images("output", outputs, step)  # 将输出数据outputs写入日志文件step += 1writer.close()
  • 结果如下:
    在这里插入图片描述

非线性激活层

  • 主要目的是向网络中引入一些非线性特征,非线性越多,才能训练出符合复杂数据集的模型,提高模型的泛化性
  • 常用的非线性激活层有:ReLU、Sigmoid,如下:
    • ReLU:当输入大于0时,输出等于输入。当输入小于0时,输出等于0。

    • 注意:输入的第一个位置要是batch_size,之后的不做限制

    • inplace:是否对输入进行结果替换,默认为False(不替换),并返回输出
      在这里插入图片描述
      在这里插入图片描述

    • Sigmoid:将输入经过以下公式,得到输出。

    • 注意:第一个位置也要是batch_size,之后的不做限制:
      在这里插入图片描述

  • ReLU激活函数代码如下:
import torch
from torch import nninput = torch.tensor([[1, -0.5],[-1, 3]])
# 由于ReLU激活函数需要第一个维度为batch_size,所以需要对输入input进行reshape操作
input = torch.reshape(input, (-1, 1, 2, 2)) class Tudui(nn.Module):def __init__(self): # 初始化super().__init__()  # 继承父类的初始化self.relu1 = nn.ReLU()  # ReLU激活函数def forward(self, input):output = self.relu1(input)  # 调用ReLU激活函数对输入input进行激活return outputtudui = Tudui()
output = tudui(input)
print(output)# 输出结果:
# tensor([[[[1., 0.],
#           [0., 3.]]]])
  • Sigmoid激活函数代码如下:
import torch
import torchvision
from torch import nn
from torch.utils.tensorboard import SummaryWritertest_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=0)writer = SummaryWriter("logs")  # 创建一个SummaryWriter对象,指定日志文件保存路径
class Tudui(nn.Module):def __init__(self): # 初始化super().__init__()  # 继承父类的初始化self.sigmoid1 = nn.Sigmoid()  # Sigmoid激活函数def forward(self, input):output = self.sigmoid1(input)  # 调用Sigmoid激活函数return output
step = 0
for data in test_loader:imgs, targets = datatudui = Tudui() # 实例化网络模型writer.add_images("input", imgs, step)  # 将输入数据imgs写入日志文件outputs = tudui(imgs)   # 调用网络模型进行前向传播writer.add_images("output", outputs, step)  # 将输出数据outputs写入日志文件step += 1writer.close()  # 关闭日志文件
  • 结果如下:
    在这里插入图片描述

正则化层

  • 用的不是很多,但是有篇论文说,采用正则化层可以加快神经网络的训练速度,参数设置如下:
    • num_features:输入中的channel数
      在这里插入图片描述

循环层

  • 一种特定的网络结构,在文字识别中用的比较多
    在这里插入图片描述

Transform层

  • Pytorch把Transform封装成网络层
    在这里插入图片描述

线性层

  • 其作用是将输入的数据进行线性变换,即将输入数据乘以权重矩阵,并加上偏置向量,以生成输出数据,如下图所示,从x到g的过程就是经历了一个线性层:

    • 注意:线性层需要输入数据为一维,所以对于图像数据,我们先要进行拉直操作
    • 由下图可以看出:线性层会对每个输入元素进行kx+b的操作,而如果输入数据是一维的,那么只需要定义两个数组(权重数组、偏置数组)即可,虽然会丢失一些空间信息,但是简化了模型的实现和参数的管理,所以线性层需要输入数据为一维。
      在这里插入图片描述在这里插入图片描述
  • 以下是参数设置:

    • in_features:(可以有多位,但是最好满足是一维向量的形式,且最后一位是输入特征数,也可以只有一位,即只有输入特征数)输入特征数,即上图的x的个数d
    • out_features:输出特征数,即上图的g的个数L
    • bias:偏置,即上图的b,默认为True,即加一个偏置
      在这里插入图片描述
  • 代码实现如下:

    • 注意:由于我们定义的线性层的输入特征要是196608,所以我们要在test_loader中设置drop_last=True,如果我们不设置drop_last=True,最后一个batch的样本数不足64,输入特征不满足196608,就会报错
    • 可以使用reshape()对输入进行格式转换,同时由于输入可以仅仅只有输入特征数,所以flatten()也可以用来对输入进行格式转换
import torch
import torchvision
from torch import nn# input = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# print(input.shape)
# input = torch.reshape(input, (1,1,1,-1))
# print(input.shape)test_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
# 由于我们定义的线性层的输入特征要是196608,所以如果我们不设置drop_last=True,最后一个batch的样本数不足64,输入特征不满足196608,就会报错
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=0, drop_last=True)    # drop_last=True表示如果最后一个batch的样本数少于batch_size,则丢弃
class Tudui(nn.Module):def __init__(self):super().__init__()self.linear1 = nn.Linear(196608,3)  # 输入特征数为196608,输出特征数为3def forward(self, input):output = self.linear1(input)return outputtudui = Tudui()
for data in test_loader:imgs, targets = data# 可以使用torch.reshape()函数将输入数据imgs的shape从[64, 3, 32, 32]变为[1, 1, 1, 196608]# imgs = torch.reshape(imgs, (1,1,1,-1))  # 将输入数据imgs的shape从[64, 3, 32, 32]变为[1, 1, 1, 196608]# 也可以使用torch.flatten()函数将输入数据imgs的shape从[64, 3, 32, 32]变为[196608]imgs = torch.flatten(imgs) # 将输入数据imgs的shape从[64, 3, 32, 32]变为[196608]outputs = tudui(imgs)   # 得到输出,且输出的shape为[3]print(outputs.shape)

Dropout层

  • 在训练中,以一定概率将输入中的随机元素变成0,为了防止过拟合
    在这里插入图片描述

这篇关于Pytorch学习 day08(最大池化层、非线性激活层、正则化层、循环层、Transformer层、线性层、Dropout层)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793383

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系