PyTorch——利用Accelerate轻松控制多个CPU/GPU/TPU加速计算

2024-03-09 10:30

本文主要是介绍PyTorch——利用Accelerate轻松控制多个CPU/GPU/TPU加速计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyTorch——利用Accelerate轻松控制多个CPU/GPU/TPU加速计算

    • 前言
    • 官方示例
    • 单个程序内控制多个CPU/GPU/TPU
      • 简单说一下
      • 设备环境
      • 导包
      • 加载数据 FashionMNIST
      • 创建一个简单的CNN模型
      • 训练函数-只包含训练
      • 训练函数-包含训练和验证
      • 训练
    • 多个服务器、多个程序间控制多个CPU/GPU/TPU
    • 参考链接

前言

  • CPU?GPU?TPU?
    • 计算设备太多,很混乱?
    • 切换环境,代码大量改来改去?
    • 不懂怎么调用多个CPU/GPU/TPU?或者想轻松调用?
  • OK!OK!OK!
    • 来自HuggingFace的Accelerate库帮你轻松解决这些问题,只需几行代码改动就可以快速完成计算设备的自动调整。
      huggingface
  • 相关地址
    • 官方文档:https://huggingface.co/docs/accelerate/index
    • GitHub:https://github.com/huggingface/accelerate
    • 安装(推荐用>=0.14的版本) $ pip install accelerate
  • 下面就来说说怎么用
    • 你也可以直接看我在Kaggle上做好的完整的Notebook示例

官方示例

  • 先大致看个样
  • 移除掉以前.to(device)部分的代码,引入Acceleratormodel、optimizer、data、loss.backward()做下处理即可
import torch
import torch.nn.functional as F
from datasets import load_dataset
from accelerate import Accelerator# device = 'cpu'
accelerator = Accelerator()# model = torch.nn.Transformer().to(device)
model = torch.nn.Transformer()
optimizer = torch.optim.Adam(model.parameters())dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)model, optimizer, data = accelerator.prepare(model, optimizer, data)model.train()
for epoch in range(10):for source, targets in data:# source = source.to(device)# targets = targets.to(device)optimizer.zero_grad()output = model(source)loss = F.cross_entropy(output, targets)# loss.backward()accelerator.backward(loss)optimizer.step()

单个程序内控制多个CPU/GPU/TPU

  • 详细内容请参考官方Example

简单说一下

  • 对于单个计算设备,像前面那个简单示例改下代码即可
  • 多个计算设备(例如GPU)的情况下,有一点特殊的要处理,下面做个完整的PyTorch训练示例
    • 你可以拿这个和我之前发的示例做个对比 CNN图像分类-FashionMNIST
    • 也可以直接看我在Kaggle上做好的完整的Notebook示例

设备环境

  • 看看当前的显卡设备(2颗Tesla T4),命令 $ nvidia-smi
Thu Apr 27 10:53:26 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.161.03   Driver Version: 470.161.03   CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   43C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  Tesla T4            Off  | 00000000:00:05.0 Off |                    0 |
| N/A   41C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
  • 安装或更新Accelerate,命令 $ !pip install --upgrade accelerate

导包

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor, Compose
import torchvision.datasets as datasets
from accelerate import Accelerator
from accelerate import notebook_launcher

加载数据 FashionMNIST

train_data = datasets.FashionMNIST(root="./data",train=True,download=True,transform=Compose([ToTensor()])
)test_data = datasets.FashionMNIST(root="./data",train=False,download=True,transform=Compose([ToTensor()])
)print(train_data.data.shape)
print(test_data.data.shape)

创建一个简单的CNN模型

class CNNModel(nn.Module):def __init__(self):super(CNNModel, self).__init__()self.module1 = nn.Sequential(nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(32),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))  self.module2 = nn.Sequential(nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2))self.flatten = nn.Flatten()self.linear1 = nn.Linear(7 * 7 * 64, 64)self.linear2 = nn.Linear(64, 10)self.relu = nn.ReLU()def forward(self, x):out = self.module1(x)out = self.module2(out)out = self.flatten(out)out = self.linear1(out)out = self.relu(out)out = self.linear2(out)return out

训练函数-只包含训练

  • 注意看accelerator相关代码
  • 若要实现多设备控制训练,for epoch in range(epoch_num):中末尾处的代码必不可少
def training_function():# 参数配置epoch_num = 4batch_size = 64learning_rate = 0.005# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')# 数据train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)val_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)# 模型/损失函数/优化器# model = CNNModel().to(device)model = CNNModel()criterion = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)accelerator = Accelerator()model, optimizer, train_loader, val_loader = accelerator.prepare(model, optimizer, train_loader, val_loader)# 开始训练for epoch in range(epoch_num):# 训练model.train()for i, (X_train, y_train) in enumerate(train_loader):# X_train = X_train.to(device)# y_train = y_train.to(device)out = model(X_train)loss = criterion(out, y_train)optimizer.zero_grad()# loss.backward()accelerator.backward(loss)optimizer.step()if (i + 1) % 100 == 0:print(f"{accelerator.device} Train... [epoch {epoch + 1}/{epoch_num}, step {i + 1}/{len(train_loader)}]\t[loss {loss.item()}]")# 等待每个GPU上的模型执行完当前的epoch,并进行合并同步accelerator.wait_for_everyone() model = accelerator.unwrap_model(model)# 现在所有GPU上都一样了,可以保存modelaccelerator.save(model, "model.pth") 

训练函数-包含训练和验证

  • 相比前面的代码,多了“验证”相关的代码
  • 验证时,因为使用多个设备进行训练,所以会比较特殊,会涉及到多个设备的验证结果合并的问题
def training_function():# 参数配置epoch_num = 4batch_size = 64learning_rate = 0.005# 数据train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)val_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)# 模型/损失函数/优化器model = CNNModel()criterion = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)accelerator = Accelerator()model, optimizer, train_loader, val_loader = accelerator.prepare(model, optimizer, train_loader, val_loader)# 开始训练for epoch in range(epoch_num):# 训练model.train()for i, (X_train, y_train) in enumerate(train_loader):out = model(X_train)loss = criterion(out, y_train)optimizer.zero_grad()accelerator.backward(loss)optimizer.step()if (i + 1) % 100 == 0:print(f"{accelerator.device} Train... [epoch {epoch + 1}/{epoch_num}, step {i + 1}/{len(train_loader)}]\t[loss {loss.item()}]")# 验证model.eval()correct, total = 0, 0for X_val, y_val in val_loader:with torch.no_grad():output = model(X_val)_, pred = torch.max(output, 1)# 合并每个GPU的验证数据pred, y_val = accelerator.gather_for_metrics((pred, y_val))total += y_val.size(0)correct += (pred == y_val).sum()# 用main process打印accuracyaccelerator.print(f'epoch {epoch + 1}/{epoch_num}, accuracy = {100 * (correct.item() / total):.2f}')# 等待每个GPU上的模型执行完当前的epoch,并进行合并同步accelerator.wait_for_everyone() model = accelerator.unwrap_model(model)# 现在所有GPU上都一样了,可以保存modelaccelerator.save(model, "model.pth") 

训练

  • 如果你在本地训练的话,直接调用前面定义的函数training_function即可。最后在命令行启动训练脚本 $ accelerate launch example.py
training_function()
  • 如果你在Kaggle/Colab上面,则需要利用notebook_launcher进行训练
# num_processes=2 指定使用2个GPU,因为当前我申请了2颗 Nvidia T4
notebook_launcher(training_function, num_processes=2)
  • 下面是2个GPU训练时的控制台输出样例
Launching training on 2 GPUs.
cuda:0 Train... [epoch 1/4, step 100/469]	[loss 0.43843933939933777]
cuda:1 Train... [epoch 1/4, step 100/469]	[loss 0.5267877578735352]
cuda:0 Train... [epoch 1/4, step 200/469]	[loss 0.39918822050094604]cuda:1 Train... [epoch 1/4, step 200/469]	[loss 0.2748252749443054]cuda:1 Train... [epoch 1/4, step 300/469]	[loss 0.54105544090271]cuda:0 Train... [epoch 1/4, step 300/469]	[loss 0.34716445207595825]cuda:1 Train... [epoch 1/4, step 400/469]	[loss 0.2694844901561737]
cuda:0 Train... [epoch 1/4, step 400/469]	[loss 0.4343942701816559]
epoch 1/4, accuracy = 88.49
cuda:0 Train... [epoch 2/4, step 100/469]	[loss 0.19695354998111725]
cuda:1 Train... [epoch 2/4, step 100/469]	[loss 0.2911057770252228]
cuda:0 Train... [epoch 2/4, step 200/469]	[loss 0.2948791980743408]
cuda:1 Train... [epoch 2/4, step 200/469]	[loss 0.292676717042923]
cuda:0 Train... [epoch 2/4, step 300/469]	[loss 0.222089946269989]
cuda:1 Train... [epoch 2/4, step 300/469]	[loss 0.28814008831977844]
cuda:0 Train... [epoch 2/4, step 400/469]	[loss 0.3431250751018524]
cuda:1 Train... [epoch 2/4, step 400/469]	[loss 0.2546379864215851]
epoch 2/4, accuracy = 87.31
cuda:1 Train... [epoch 3/4, step 100/469]	[loss 0.24118559062480927]cuda:0 Train... [epoch 3/4, step 100/469]	[loss 0.363821804523468]cuda:0 Train... [epoch 3/4, step 200/469]	[loss 0.36783623695373535]
cuda:1 Train... [epoch 3/4, step 200/469]	[loss 0.18346744775772095]
cuda:0 Train... [epoch 3/4, step 300/469]	[loss 0.23459288477897644]
cuda:1 Train... [epoch 3/4, step 300/469]	[loss 0.2887689769268036]
cuda:0 Train... [epoch 3/4, step 400/469]	[loss 0.3079166114330292]
cuda:1 Train... [epoch 3/4, step 400/469]	[loss 0.18255220353603363]
epoch 3/4, accuracy = 88.46
cuda:1 Train... [epoch 4/4, step 100/469]	[loss 0.27428603172302246]
cuda:0 Train... [epoch 4/4, step 100/469]	[loss 0.17705145478248596]
cuda:1 Train... [epoch 4/4, step 200/469]	[loss 0.2811894416809082]
cuda:0 Train... [epoch 4/4, step 200/469]	[loss 0.22682836651802063]
cuda:0 Train... [epoch 4/4, step 300/469]	[loss 0.2291710525751114]
cuda:1 Train... [epoch 4/4, step 300/469]	[loss 0.32024848461151123]
cuda:0 Train... [epoch 4/4, step 400/469]	[loss 0.24648766219615936]
cuda:1 Train... [epoch 4/4, step 400/469]	[loss 0.0805584192276001]
epoch 4/4, accuracy = 89.38
  • 下面是1个TPU训练时的控制台输出样例
Launching training on CPU.
xla:0 Train... [epoch 1/4, step 100/938]	[loss 0.6051161289215088]
xla:0 Train... [epoch 1/4, step 200/938]	[loss 0.27442359924316406]
xla:0 Train... [epoch 1/4, step 300/938]	[loss 0.557417631149292]
xla:0 Train... [epoch 1/4, step 400/938]	[loss 0.1840067058801651]
xla:0 Train... [epoch 1/4, step 500/938]	[loss 0.5252436399459839]
xla:0 Train... [epoch 1/4, step 600/938]	[loss 0.2718536853790283]
xla:0 Train... [epoch 1/4, step 700/938]	[loss 0.2763175368309021]
xla:0 Train... [epoch 1/4, step 800/938]	[loss 0.39897507429122925]
xla:0 Train... [epoch 1/4, step 900/938]	[loss 0.28720396757125854]
epoch = 0, accuracy = 86.36
xla:0 Train... [epoch 2/4, step 100/938]	[loss 0.24496735632419586]
xla:0 Train... [epoch 2/4, step 200/938]	[loss 0.37713131308555603]
xla:0 Train... [epoch 2/4, step 300/938]	[loss 0.3106330633163452]
xla:0 Train... [epoch 2/4, step 400/938]	[loss 0.40438592433929443]
xla:0 Train... [epoch 2/4, step 500/938]	[loss 0.38303741812705994]
xla:0 Train... [epoch 2/4, step 600/938]	[loss 0.39199298620224]
xla:0 Train... [epoch 2/4, step 700/938]	[loss 0.38932573795318604]
xla:0 Train... [epoch 2/4, step 800/938]	[loss 0.26298171281814575]
xla:0 Train... [epoch 2/4, step 900/938]	[loss 0.21517205238342285]
epoch = 1, accuracy = 90.07
xla:0 Train... [epoch 3/4, step 100/938]	[loss 0.366019606590271]
xla:0 Train... [epoch 3/4, step 200/938]	[loss 0.27360212802886963]
xla:0 Train... [epoch 3/4, step 300/938]	[loss 0.2014923095703125]
xla:0 Train... [epoch 3/4, step 400/938]	[loss 0.21998485922813416]
xla:0 Train... [epoch 3/4, step 500/938]	[loss 0.28129786252975464]
xla:0 Train... [epoch 3/4, step 600/938]	[loss 0.42534705996513367]
xla:0 Train... [epoch 3/4, step 700/938]	[loss 0.22158119082450867]
xla:0 Train... [epoch 3/4, step 800/938]	[loss 0.359947144985199]
xla:0 Train... [epoch 3/4, step 900/938]	[loss 0.3221997022628784]
epoch = 2, accuracy = 90.36
xla:0 Train... [epoch 4/4, step 100/938]	[loss 0.2814193069934845]
xla:0 Train... [epoch 4/4, step 200/938]	[loss 0.16465164721012115]
xla:0 Train... [epoch 4/4, step 300/938]	[loss 0.2897304892539978]
xla:0 Train... [epoch 4/4, step 400/938]	[loss 0.13403896987438202]
xla:0 Train... [epoch 4/4, step 500/938]	[loss 0.1135573536157608]
xla:0 Train... [epoch 4/4, step 600/938]	[loss 0.14964193105697632]
xla:0 Train... [epoch 4/4, step 700/938]	[loss 0.20239461958408356]
xla:0 Train... [epoch 4/4, step 800/938]	[loss 0.23625142872333527]
xla:0 Train... [epoch 4/4, step 900/938]	[loss 0.3418393135070801]
epoch = 3, accuracy = 90.11

多个服务器、多个程序间控制多个CPU/GPU/TPU

  • 详细内容请参考官方Example
  • 包括
    • 单服务器内,多个程序控制多个计算设备
    • 多个服务器间,多个程序控制多个计算设备
  • 写好代码后,请先在每个服务器下执行$ accelerate config生成对应的配置文件,下面是个样例
(huggingface) PS C:\Users\alion\temp> accelerate config
------------------------------------------------------------------------------------------------------------------------In which compute environment are you running?
This machine
------------------------------------------------------------------------------------------------------------------------Which type of machine are you using?
multi-GPU
How many different machines will you use (use more than 1 for multi-node training)? [1]: 2
------------------------------------------------------------------------------------------------------------------------What is the rank of this machine?
0
What is the IP address of the machine that will host the main process? 192.168.101
What is the port you will use to communicate with the main process? 12345
Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: yes
Do you wish to optimize your script with torch dynamo?[yes/NO]:no
Do you want to use DeepSpeed? [yes/NO]: no
Do you want to use FullyShardedDataParallel? [yes/NO]: no
Do you want to use Megatron-LM ? [yes/NO]: no
How many GPU(s) should be used for distributed training? [1]:2
What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:0
------------------------------------------------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?
fp16
accelerate configuration saved at C:\Users\alion/.cache\huggingface\accelerate\default_config.yaml
  • 最后在每个服务器启动训练脚本 $ accelerate launch example.py(如果你是单台服务器多个程序,那就只启动一台的脚本就完了)

参考链接

  • https://github.com/huggingface/accelerate
  • https://www.kaggle.com/code/muellerzr/multi-gpu-and-accelerate
  • https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb
  • https://github.com/huggingface/accelerate/tree/main/examples

这篇关于PyTorch——利用Accelerate轻松控制多个CPU/GPU/TPU加速计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790400

相关文章

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Spring如何使用注解@DependsOn控制Bean加载顺序

《Spring如何使用注解@DependsOn控制Bean加载顺序》:本文主要介绍Spring如何使用注解@DependsOn控制Bean加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录1.javascript 前言2. 代码实现总结1. 前言默认情况下,Spring加载Bean的顺

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔