Windows环境下搭建chatGLM2-6B-int4量化版模型(图文详解-成果案例)

本文主要是介绍Windows环境下搭建chatGLM2-6B-int4量化版模型(图文详解-成果案例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、ChatGLM2-6介绍

二、环境准备

1. 硬件环境

2. TDM-GCC安装

3.git安装

4.Anaconda安装

三、模型安装

1.下载ChatGLM2-6b和环境准备

方式一:git命令

方式二:手动下载 

2.下载预训练模型

在Hugging Face HUb下载(挂VPN访问)

(1)git命令行下载:

(2)手动下载(建议)

3.模型使用(CPU)

1.命令行版:cli_demo.py

2.Web版本:(web_demo.py)

 3.API版本:api.py

四、遇到的问题


一、ChatGLM2-6介绍

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
  2. 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。对于更长的上下文,我们发布了 ChatGLM2-6B-32K 模型。LongBench 的测评结果表明,在等量级的开源模型中,ChatGLM2-6B-32K 有着较为明显的竞争优势。
  3. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
  4. 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用

二、环境准备

1. 硬件环境

如果需要在 cpu 上运行量化后的模型(ChatGLM2-6B-int4),还需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。 Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0。

2. TDM-GCC安装

参考博客:Windows安装tdm-gcc并勾选openMP(详细图文)-CSDN博客

3.git安装

百度安装

4.Anaconda安装

超详细Anaconda安装教程-CSDN博客

三、模型安装

1.下载ChatGLM2-6b和环境准备

下载地址:https://github.com/THUDM/ChatGLM2-6B

从 Github 下载 ChatGLM2-6B 仓库,然后进入仓库目录使用 pip 安装依赖,

transformers 库版本推荐为 4.30.2torch 推荐使用 2.0 及以上的版本,以获得最佳的推理性能

方式一:git命令

(1)在D盘打开命令提示窗口,默认下载到当前目录

git clone https://github.com/THUDM/ChatGLM2-6B

(2)切换到chatGLM2-6B目录

cd ChatGLM2-6B

(3)创建conda的虚拟环境,指定Python的版本

conda create -n chatglm2-6b python=3.8

(4)激活环境

conda activate chatglm2-6b

(5)下载依赖包

pip install -r requirements.txt

方式二:手动下载 

(1)在github地址:https://github.com/THUDM/ChatGLM2-6B

解压到你自己的目录

(2)切换到ChatGLM2-6B目录

cd ChatGLM2-6B

(3)创建conda的虚拟环境,指定Python的版本

conda create -n chatglm2-6b python=3.8

(4)激活环境

conda activate chatglm2-6b

(5)下载依赖包

pip install -r requirements.txt

2.下载预训练模型

在Hugging Face HUb下载(挂VPN访问)
(1)git命令行下载:

从 Hugging Face Hub 下载模型需要先安装Git LFS ,若安装了Git LFS可在windows命令提示符中运行如下命令检查版本 git lfs --version

若存在Git LFS,则运行:

git lfs installgit clone https://huggingface.co/THUDM/chatglm2-6b
(2)手动下载(建议)

访问地址:https://huggingface.co/THUDM/chatglm2-6b-int4/tree/main

把下图中所有的文件下载之后,放在ChatGLM2-6B的新建的model目录下。

3.模型使用(CPU)

CPU模式:量化版,经测试就速度比较慢。

model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).float()

ChatGLM2-6B 提供了三种使用方式:命令行 Demo,网页版 Demo 和 API 部署;在启动模型之前,需要找到对应启动方式的 python 源码文件,命令行模式(cli_demo.py),网页版(web_demo.py或web_demo2.py),API部署(api.py或openai_api.py) 中修改代码。

ChatGLM2-6B目录用到的文件:

1.命令行版:cli_demo.py

(1)修改cli_demo.py的代码,根据自己目录结构修改。

(2)启动命令行demo

python cli_demo.py

效果如下:

2.Web版本:(web_demo.py

(1)修改web_demo.py的代码

根据自己的训练模型位置更改代码。

(2)启动基于 Gradio 的网页版 demo:

python web_demo.py

效果如下:

(3)启动基于 Streamlit 的网页版 demo

streamlit run web_demo2.py

 3.API版本:api.py

实现了 OpenAI 格式的流式 API 部署,可以作为任意基于 ChatGPT 的应用的后端,比如 ChatGPT-Next-Web。可以通过运行仓库中的openai_api.py 进行部署

(1)安装额外的依赖

pip install fastapi uvicorn

(2)修改api.py的代码

根据自己的训练模型位置更改代码

(3)启动API模型 

python openai_api.py

四、遇到的问题

1.在启动cli_demo.py的时报错:No module named 'readline'

解决方法:下载pyreadline3

    pip: pip install pyreadline3 or python -m pip install pyreadline
    mamba: mamba install -c conda-forge pyreadline3
    conda: conda install -c conda-forge pyreadline3

作者采用的是pip install pyreadline3,下载完成之后,重新运行python cli_demo.py即可。

2.在启动web_demo.py时,报错:

Traceback (most recent call last):
  File "web_demo.py", line 91, in <module>
    user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
AttributeError: 'Textbox' object has no attribute 'style'

解决方法:pip默认安装最新版本,降低版本即可。

卸载gradio

pip uninstall gradio

安装指定版本
pip install gradio==3.50.0

3.问题报错:FileNotFoundError: Could not find module 'C:\Users\EDY\.cache\huggingface\modules\transformers_modules\model\quantization_kernels_parallel.so' (or one of its dependencies). Try using the full path with constructor syntax.

解决方法:不影响程序运行。

这篇关于Windows环境下搭建chatGLM2-6B-int4量化版模型(图文详解-成果案例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789486

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版