求解函数优化问题的改进鲸鱼优化算法

2024-03-08 23:20

本文主要是介绍求解函数优化问题的改进鲸鱼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、基本鲸鱼优化算法
    • 2、改进鲸鱼优化算法
      • (1)自适应非线性位置更新
      • (2)引入差分变异操作
  • 二、EWOA算法流程图
  • 三、仿真实验与结果分析
  • 四、参考文献

一、理论基础

1、基本鲸鱼优化算法

请参考这里。

2、改进鲸鱼优化算法

(1)自适应非线性位置更新

本文将自适应策略引入WOA算法的位置更新公式中,加快算法收敛速度、提高算法的寻优精度。具体公式如下: X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ < 1 p < 0.5 (1) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|<1\,\,\, p<0.5\tag{1} X (t+1)=S1X (t)S2A D ,A<1p<0.5(1) X → ( t + 1 ) = S 1 ⋅ X → r a n d ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ ≥ 1 p < 0.5 (2) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X_{rand}(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|≥1\,\,\, p<0.5\tag{2} X (t+1)=S1X rand(t)S2A D ,A1p<0.5(2) X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) + D → ′ ⋅ e b l ⋅ c o s ( 2 π l ) , p ≥ 0.5 (3) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)+\overrightarrow D'\cdot e^{bl}\cdot cos(2\pi l),\quad p≥0.5\tag{3} X (t+1)=S1X (t)+D eblcos(2πl),p0.5(3)其中, S 1 S_1 S1 S 2 S_2 S2分别为当前最优位置和包围步长的自适应调整系数,具体公式表示为: S 1 = − γ ⋅ [ c o s ( π ⋅ t T ) − λ ] (4) S_1=-\gamma\cdot[cos(\pi\cdot \frac tT)-\lambda]\tag{4} S1=γ[cos(πTt)λ](4) S 2 = γ ⋅ [ c o s ( π ⋅ t T ) + λ ] (5) S_2=\gamma\cdot[cos(\pi\cdot\frac tT)+\lambda]\tag{5} S2=γ[cos(πTt)+λ](5)其中, γ \gamma γ表示 S 1 S_1 S1 S 2 S_2 S2变化取值范围; λ \lambda λ表示 S 1 S_1 S1 S 2 S_2 S2取值步长,其取值分别为0.5和1。
从式(4)和式(5)不难看出,自适应调整系数 S 1 S_1 S1随着算法迭代进化呈非线性增大趋势,使种群能够充分朝向精英猎物位置移动;而 S 2 S_2 S2随着算法迭代进化而不断减小,使种群在进化后期具有较小的包围步长而加快收敛速度,从而实现算法全局探索与局部搜索能力的平衡,同时加快算法收敛速度,提高算法的寻优精度。

(2)引入差分变异操作

本文针对WOA算法容易陷入局部最优这一问题,引入差分变异思想,改善算法易陷入局部最优及出现早熟收敛现象。
差分变异思想具体描述如下:
(1)变异操作
选取当前种群中较优的鲸鱼个体进行变异,能够有效扩大算法的搜索域,避免算法陷入局部最优。具体操作如下: V → i ( t + 1 ) = X → i ( t ) + F ( X → r 1 ( t ) − X → r 2 ( t ) ) (6) \overrightarrow V_i(t+1)=\overrightarrow X_i(t)+F(\overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t))\tag{6} V i(t+1)=X i(t)+F(X r1(t)X r2(t))(6)其中, V → i ( t + 1 ) \overrightarrow V_i(t+1) V i(t+1)表示变异后的第 i i i只鲸鱼的位置; F F F表示缩放比例因子; X → r 1 ( t ) − X → r 2 ( t ) \overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t) X r1(t)X r2(t)表示当前迭代次数下鲸鱼位置的差异向量。
(2)选择操作
选择操作是将变异后的新个体与原始个体进行比较,判断其适应度值是否较优,如果较优,则保留,否则舍弃。差分进化算法中通常采用贪婪选择,具体公式如下: X → i ( t + 1 ) = { V → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) < f i t ( X → i ( t ) ) X → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) ≥ f i t ( X → i ( t ) ) (7) \overrightarrow X_i(t+1)=\begin{dcases}\overrightarrow V_i(t+1),\quad fit(\overrightarrow V_i(t+1))<fit(\overrightarrow X_i(t))\\\overrightarrow X_i(t+1),\quad fit(\overrightarrow V_i(t+1))≥fit(\overrightarrow X_i(t))\end{dcases}\tag{7} X i(t+1)={V i(t+1),fit(V i(t+1))<fit(X i(t))X i(t+1),fit(V i(t+1))fit(X i(t))(7)

二、EWOA算法流程图

在这里插入图片描述

图1 EWOA算法流程图

三、仿真实验与结果分析

实验中,设置算法的种群规模为 N = 30 N=30 N=30,最大迭代次数为 T = 500 T=500 T=500。以F1、F2、F3为例。
在这里插入图片描述

图2 F1

在这里插入图片描述

图3 F2

在这里插入图片描述

图4 F3

实验结果表明,本文算法具有较好的有效性和优越性。

四、参考文献

[1] 何庆, 魏康园, 徐钦帅. 求解函数优化问题的改进鲸鱼优化算法[J]. 微电子学与计算机, 2019, 36(4): 72-77+83.

这篇关于求解函数优化问题的改进鲸鱼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788753

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda