求解函数优化问题的改进鲸鱼优化算法

2024-03-08 23:20

本文主要是介绍求解函数优化问题的改进鲸鱼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、基本鲸鱼优化算法
    • 2、改进鲸鱼优化算法
      • (1)自适应非线性位置更新
      • (2)引入差分变异操作
  • 二、EWOA算法流程图
  • 三、仿真实验与结果分析
  • 四、参考文献

一、理论基础

1、基本鲸鱼优化算法

请参考这里。

2、改进鲸鱼优化算法

(1)自适应非线性位置更新

本文将自适应策略引入WOA算法的位置更新公式中,加快算法收敛速度、提高算法的寻优精度。具体公式如下: X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ < 1 p < 0.5 (1) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|<1\,\,\, p<0.5\tag{1} X (t+1)=S1X (t)S2A D ,A<1p<0.5(1) X → ( t + 1 ) = S 1 ⋅ X → r a n d ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ ≥ 1 p < 0.5 (2) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X_{rand}(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|≥1\,\,\, p<0.5\tag{2} X (t+1)=S1X rand(t)S2A D ,A1p<0.5(2) X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) + D → ′ ⋅ e b l ⋅ c o s ( 2 π l ) , p ≥ 0.5 (3) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)+\overrightarrow D'\cdot e^{bl}\cdot cos(2\pi l),\quad p≥0.5\tag{3} X (t+1)=S1X (t)+D eblcos(2πl),p0.5(3)其中, S 1 S_1 S1 S 2 S_2 S2分别为当前最优位置和包围步长的自适应调整系数,具体公式表示为: S 1 = − γ ⋅ [ c o s ( π ⋅ t T ) − λ ] (4) S_1=-\gamma\cdot[cos(\pi\cdot \frac tT)-\lambda]\tag{4} S1=γ[cos(πTt)λ](4) S 2 = γ ⋅ [ c o s ( π ⋅ t T ) + λ ] (5) S_2=\gamma\cdot[cos(\pi\cdot\frac tT)+\lambda]\tag{5} S2=γ[cos(πTt)+λ](5)其中, γ \gamma γ表示 S 1 S_1 S1 S 2 S_2 S2变化取值范围; λ \lambda λ表示 S 1 S_1 S1 S 2 S_2 S2取值步长,其取值分别为0.5和1。
从式(4)和式(5)不难看出,自适应调整系数 S 1 S_1 S1随着算法迭代进化呈非线性增大趋势,使种群能够充分朝向精英猎物位置移动;而 S 2 S_2 S2随着算法迭代进化而不断减小,使种群在进化后期具有较小的包围步长而加快收敛速度,从而实现算法全局探索与局部搜索能力的平衡,同时加快算法收敛速度,提高算法的寻优精度。

(2)引入差分变异操作

本文针对WOA算法容易陷入局部最优这一问题,引入差分变异思想,改善算法易陷入局部最优及出现早熟收敛现象。
差分变异思想具体描述如下:
(1)变异操作
选取当前种群中较优的鲸鱼个体进行变异,能够有效扩大算法的搜索域,避免算法陷入局部最优。具体操作如下: V → i ( t + 1 ) = X → i ( t ) + F ( X → r 1 ( t ) − X → r 2 ( t ) ) (6) \overrightarrow V_i(t+1)=\overrightarrow X_i(t)+F(\overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t))\tag{6} V i(t+1)=X i(t)+F(X r1(t)X r2(t))(6)其中, V → i ( t + 1 ) \overrightarrow V_i(t+1) V i(t+1)表示变异后的第 i i i只鲸鱼的位置; F F F表示缩放比例因子; X → r 1 ( t ) − X → r 2 ( t ) \overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t) X r1(t)X r2(t)表示当前迭代次数下鲸鱼位置的差异向量。
(2)选择操作
选择操作是将变异后的新个体与原始个体进行比较,判断其适应度值是否较优,如果较优,则保留,否则舍弃。差分进化算法中通常采用贪婪选择,具体公式如下: X → i ( t + 1 ) = { V → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) < f i t ( X → i ( t ) ) X → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) ≥ f i t ( X → i ( t ) ) (7) \overrightarrow X_i(t+1)=\begin{dcases}\overrightarrow V_i(t+1),\quad fit(\overrightarrow V_i(t+1))<fit(\overrightarrow X_i(t))\\\overrightarrow X_i(t+1),\quad fit(\overrightarrow V_i(t+1))≥fit(\overrightarrow X_i(t))\end{dcases}\tag{7} X i(t+1)={V i(t+1),fit(V i(t+1))<fit(X i(t))X i(t+1),fit(V i(t+1))fit(X i(t))(7)

二、EWOA算法流程图

在这里插入图片描述

图1 EWOA算法流程图

三、仿真实验与结果分析

实验中,设置算法的种群规模为 N = 30 N=30 N=30,最大迭代次数为 T = 500 T=500 T=500。以F1、F2、F3为例。
在这里插入图片描述

图2 F1

在这里插入图片描述

图3 F2

在这里插入图片描述

图4 F3

实验结果表明,本文算法具有较好的有效性和优越性。

四、参考文献

[1] 何庆, 魏康园, 徐钦帅. 求解函数优化问题的改进鲸鱼优化算法[J]. 微电子学与计算机, 2019, 36(4): 72-77+83.

这篇关于求解函数优化问题的改进鲸鱼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788753

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、