求解函数优化问题的改进鲸鱼优化算法

2024-03-08 23:20

本文主要是介绍求解函数优化问题的改进鲸鱼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、基本鲸鱼优化算法
    • 2、改进鲸鱼优化算法
      • (1)自适应非线性位置更新
      • (2)引入差分变异操作
  • 二、EWOA算法流程图
  • 三、仿真实验与结果分析
  • 四、参考文献

一、理论基础

1、基本鲸鱼优化算法

请参考这里。

2、改进鲸鱼优化算法

(1)自适应非线性位置更新

本文将自适应策略引入WOA算法的位置更新公式中,加快算法收敛速度、提高算法的寻优精度。具体公式如下: X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ < 1 p < 0.5 (1) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|<1\,\,\, p<0.5\tag{1} X (t+1)=S1X (t)S2A D ,A<1p<0.5(1) X → ( t + 1 ) = S 1 ⋅ X → r a n d ( t ) − S 2 ⋅ A → ⋅ D → , ∣ A ∣ ≥ 1 p < 0.5 (2) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X_{rand}(t)-S_2\cdot\overrightarrow A\cdot\overrightarrow D,\quad |A|≥1\,\,\, p<0.5\tag{2} X (t+1)=S1X rand(t)S2A D ,A1p<0.5(2) X → ( t + 1 ) = S 1 ⋅ X → ∗ ( t ) + D → ′ ⋅ e b l ⋅ c o s ( 2 π l ) , p ≥ 0.5 (3) \overrightarrow X(t+1)=S_1\cdot\overrightarrow X^*(t)+\overrightarrow D'\cdot e^{bl}\cdot cos(2\pi l),\quad p≥0.5\tag{3} X (t+1)=S1X (t)+D eblcos(2πl),p0.5(3)其中, S 1 S_1 S1 S 2 S_2 S2分别为当前最优位置和包围步长的自适应调整系数,具体公式表示为: S 1 = − γ ⋅ [ c o s ( π ⋅ t T ) − λ ] (4) S_1=-\gamma\cdot[cos(\pi\cdot \frac tT)-\lambda]\tag{4} S1=γ[cos(πTt)λ](4) S 2 = γ ⋅ [ c o s ( π ⋅ t T ) + λ ] (5) S_2=\gamma\cdot[cos(\pi\cdot\frac tT)+\lambda]\tag{5} S2=γ[cos(πTt)+λ](5)其中, γ \gamma γ表示 S 1 S_1 S1 S 2 S_2 S2变化取值范围; λ \lambda λ表示 S 1 S_1 S1 S 2 S_2 S2取值步长,其取值分别为0.5和1。
从式(4)和式(5)不难看出,自适应调整系数 S 1 S_1 S1随着算法迭代进化呈非线性增大趋势,使种群能够充分朝向精英猎物位置移动;而 S 2 S_2 S2随着算法迭代进化而不断减小,使种群在进化后期具有较小的包围步长而加快收敛速度,从而实现算法全局探索与局部搜索能力的平衡,同时加快算法收敛速度,提高算法的寻优精度。

(2)引入差分变异操作

本文针对WOA算法容易陷入局部最优这一问题,引入差分变异思想,改善算法易陷入局部最优及出现早熟收敛现象。
差分变异思想具体描述如下:
(1)变异操作
选取当前种群中较优的鲸鱼个体进行变异,能够有效扩大算法的搜索域,避免算法陷入局部最优。具体操作如下: V → i ( t + 1 ) = X → i ( t ) + F ( X → r 1 ( t ) − X → r 2 ( t ) ) (6) \overrightarrow V_i(t+1)=\overrightarrow X_i(t)+F(\overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t))\tag{6} V i(t+1)=X i(t)+F(X r1(t)X r2(t))(6)其中, V → i ( t + 1 ) \overrightarrow V_i(t+1) V i(t+1)表示变异后的第 i i i只鲸鱼的位置; F F F表示缩放比例因子; X → r 1 ( t ) − X → r 2 ( t ) \overrightarrow X_{r_1}(t)-\overrightarrow X_{r_2}(t) X r1(t)X r2(t)表示当前迭代次数下鲸鱼位置的差异向量。
(2)选择操作
选择操作是将变异后的新个体与原始个体进行比较,判断其适应度值是否较优,如果较优,则保留,否则舍弃。差分进化算法中通常采用贪婪选择,具体公式如下: X → i ( t + 1 ) = { V → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) < f i t ( X → i ( t ) ) X → i ( t + 1 ) , f i t ( V → i ( t + 1 ) ) ≥ f i t ( X → i ( t ) ) (7) \overrightarrow X_i(t+1)=\begin{dcases}\overrightarrow V_i(t+1),\quad fit(\overrightarrow V_i(t+1))<fit(\overrightarrow X_i(t))\\\overrightarrow X_i(t+1),\quad fit(\overrightarrow V_i(t+1))≥fit(\overrightarrow X_i(t))\end{dcases}\tag{7} X i(t+1)={V i(t+1),fit(V i(t+1))<fit(X i(t))X i(t+1),fit(V i(t+1))fit(X i(t))(7)

二、EWOA算法流程图

在这里插入图片描述

图1 EWOA算法流程图

三、仿真实验与结果分析

实验中,设置算法的种群规模为 N = 30 N=30 N=30,最大迭代次数为 T = 500 T=500 T=500。以F1、F2、F3为例。
在这里插入图片描述

图2 F1

在这里插入图片描述

图3 F2

在这里插入图片描述

图4 F3

实验结果表明,本文算法具有较好的有效性和优越性。

四、参考文献

[1] 何庆, 魏康园, 徐钦帅. 求解函数优化问题的改进鲸鱼优化算法[J]. 微电子学与计算机, 2019, 36(4): 72-77+83.

这篇关于求解函数优化问题的改进鲸鱼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788753

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>