chatGPT的耳朵!OpenAI的开源语音识别AI:Whisper !

2024-03-07 15:36

本文主要是介绍chatGPT的耳朵!OpenAI的开源语音识别AI:Whisper !,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语音识别是通用人工智能的重要一环!可以说是AI的耳朵!

它可以让机器理解人类的语音,并将其转换为文本或其他形式的输出。

语音识别的应用场景非常广泛,比如智能助理、语音搜索、语音翻译、语音输入等等。

然而,语音识别也面临着很多挑战,比如不同的语言、口音、噪音、专业术语等等,都会影响语音识别的准确性和鲁棒性。

为了解决这些问题,OpenAI开源了语音识别系统: Whisper 

目前在开源网站上已收获5w星!

图片

它号称其英文语音辨识能力已达到人类水准,且它亦支持其它98种语言的自动语音辨识。

图片

 Whisper是什么?

Whisper是由研发出ChatGPT的OpenAI的研究团队开发的,OpenAI的研究成果也经常引起广泛的关注和讨论,比如GPT系列的预训练语言模型、DALL-E的图像生成模型、CLIP的图像分类模型等等。

Whisper的主要作者是Jong Wook Kim,他是OpenAI的研究科学家,他的研究兴趣是语音处理、自然语言处理和机器学习。

Whisper 架构是一种简单的端到端方法,以编码器-解码器 Transformer 的形式实现。输入音频被分成 30 秒的块,转换为对数梅尔频谱图,然后传递到编码器。

图片

解码器经过训练来预测相应的文本标题,并与特殊标记混合在一起,指导单个模型执行语言识别、短语级时间戳、多语言语音转录和英语语音翻译等任务。

图片

 

Whisper的惊艳功能

Whisper的最大特点是它的多语言和多任务能力,它可以同时处理多种语言和多种任务,而不需要针对每种语言或任务单独训练或调整模型。Whisper目前支持的语言有99种,包括英语、中文、日语、法语、德语、西班牙语等等,覆盖了世界上大部分的人口和地区。

Whisper目前支持的任务有四种,分别是:

多语言语音识别(Multilingual Speech Recognition):将语音转换为与语音相同语言的文本,比如将英语语音转换为英语文本,或者将中文语音转换为中文文本。

语音翻译(Speech Translation):将语音从一种语言翻译成另一种语言的文本,比如将英语语音翻译成中文文本,或者将中文语音翻译成英语文本。

语言识别(Language Identification):识别语音中的语言类型,比如判断语音是英语还是中文,或者是其他语言。

语音活动检测(Voice Activity Detection):检测语音中的活动区域,即语音中有人说话的部分,和没有人说话的部分。

Whisper的创新之处在于,它可以让人工智能学习和使用语境,从而提高和人类的沟通质量。Whisper的工作原理是,它会根据人类的输入,生成一个语境向量,这是一个包含了语境信息的数学表示。

然后,它会用这个语境向量来指导人工智能的输出,使其更加符合人类的期望。Whisper的优点是,它可以和任何类型的人工智能模型配合使用,无论是文本,图像,音频,视频,还是其他的形式。Whisper还可以让人工智能适应不同的语境,比如不同的场景,不同的任务,不同的用户,不同的风格,等等。

 Whisper的性能

Whisper的这些功能不仅强大,而且准确和鲁棒。Whisper的英文语音识别的准确率已经达到了人类的水平,甚至在一些嘈杂的环境中,还超过了人类的水平。Whisper的多语言语音识别和语音翻译的准确率也非常高,甚至在一些零样本的情况下,也能够表现出色。

Whisper 的性能因语言而异。下图显示了按语言large-v3和模型的性能细分,使用在 Common Voice 15 和 Fleurs 数据集上评估的large-v2WER(单词错误率)或 CER(字符错误率,以斜体显示)。

与其他模型和数据集相对应的其他 WER/CER 指标可以在论文的附录 D.1、D.2 和 D.4 中找到,以及附录 D 中的 BLEU(双语评估研究)翻译分数。

Whisper的性能不仅在实验室的环境中得到了验证,也在实际的应用场景中得到了证明。Whisper已经被应用在了OpenAI的一些项目中,比如GPT-4的语音输入,CLIP的语音分类等等。

代码地址:

https://github.com/openai/whisper

论文地址:

https://arxiv.org/abs/2212.04356

博文地址:

https://openai.com/research/whisper

这篇关于chatGPT的耳朵!OpenAI的开源语音识别AI:Whisper !的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784003

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring