PaddleOCR识别框架解读[04] 文本检测det模型构建

2024-03-07 11:12

本文主要是介绍PaddleOCR识别框架解读[04] 文本检测det模型构建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • det_mv3_db.yml
    • build_model函数
      • base_model类
    • build_backbone函数
      • MobileNetV3
    • build_neck函数
    • build_head函数

det_mv3_db.yml

Global:use_gpu: trueuse_xpu: falseepoch_num: 1200log_smooth_window: 20print_batch_step: 10save_model_dir: ./output/db_mv3/save_epoch_step: 1200# evaluation is run every 2000 iterationseval_batch_step: [0, 2000]cal_metric_during_train: Falsepretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrainedcheckpoints:save_inference_dir:use_visualdl: Falseinfer_img: doc/imgs_en/img_10.jpgsave_res_path: ./output/det_db/predicts_db.txtArchitecture:model_type: detalgorithm: DBTransform:Backbone:name: MobileNetV3scale: 0.5model_name: largeNeck:name: DBFPNout_channels: 256Head:name: DBHeadk: 50Loss:name: DBLossbalance_loss: truemain_loss_type: DiceLossalpha: 5beta: 10ohem_ratio: 3Optimizer:name: Adambeta1: 0.9beta2: 0.999lr:learning_rate: 0.001regularizer:name: 'L2'factor: 0PostProcess:name: DBPostProcessthresh: 0.3box_thresh: 0.6max_candidates: 1000unclip_ratio: 1.5Metric:name: DetMetricmain_indicator: hmeanTrain:dataset:name: SimpleDataSetdata_dir: ./train_data/icdar2015/text_localization/label_file_list:- ./train_data/icdar2015/text_localization/train_icdar2015_label.txtratio_list: [1.0]transforms:- DecodeImage: # load imageimg_mode: BGRchannel_first: False- DetLabelEncode: # Class handling label- IaaAugment:augmenter_args:- { 'type': Fliplr, 'args': { 'p': 0.5 } }- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }- { 'type': Resize, 'args': { 'size': [0.5, 3] } }- EastRandomCropData:size: [640, 640]max_tries: 50keep_ratio: true- MakeBorderMap:shrink_ratio: 0.4thresh_min: 0.3thresh_max: 0.7- MakeShrinkMap:shrink_ratio: 0.4min_text_size: 8- NormalizeImage:scale: 1./255.mean: [0.485, 0.456, 0.406]std: [0.229, 0.224, 0.225]order: 'hwc'- ToCHWImage:- KeepKeys:keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader listloader:shuffle: Truedrop_last: Falsebatch_size_per_card: 16num_workers: 8use_shared_memory: TrueEval:dataset:name: SimpleDataSetdata_dir: ./train_data/icdar2015/text_localization/label_file_list:- ./train_data/icdar2015/text_localization/test_icdar2015_label.txttransforms:- DecodeImage: # load imageimg_mode: BGRchannel_first: False- DetLabelEncode: # Class handling label- DetResizeForTest:image_shape: [736, 1280]- NormalizeImage:scale: 1./255.mean: [0.485, 0.456, 0.406]std: [0.229, 0.224, 0.225]order: 'hwc'- ToCHWImage:- KeepKeys:keep_keys: ['image', 'shape', 'polys', 'ignore_tags']loader:shuffle: Falsedrop_last: Falsebatch_size_per_card: 1 # must be 1num_workers: 8use_shared_memory: True

build_model函数

def build_model(config):config = copy.deepcopy(config)if not "name" in config:arch = BaseModel(config)else:name = config.pop("name")mod = importlib.import_module(__name__)arch = getattr(mod, name)(config)return arch

base_model类

from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionfrom paddle import nn
from ppocr.modeling.transforms import build_transform
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head__all__ = ['BaseModel']class BaseModel(nn.Layer):def __init__(self, config):super(BaseModel, self).__init__()# 输入通道in_channels = config.get('in_channels', 3)# 网络类型, 目前支持det, rec, cls.model_type = config['model_type']# ==========构建transfrom==========# 识别rec任务, transfrom可以设置为TPS、None;# 检测det和分类cls任务, transform可以设置为None;# if you make model differently, you can use transfrom in det and cls.if 'Transform' not in config or config['Transform'] is None:self.use_transform = Falseelse:self.use_transform = Trueconfig['Transform']['in_channels'] = in_channelsself.transform = build_transform(config['Transform'])in_channels = self.transform.out_channels# ==========构建backbone==========if 'Backbone' not in config or config['Backbone'] is None:self.use_backbone = Falseelse:self.use_backbone = Trueconfig["Backbone"]['in_channels'] = in_channelsself.backbone = build_backbone(config["Backbone"], model_type)in_channels = self.backbone.out_channels# ==========构建neck==========# 识别rec任务, neck可以是cnn、rnn或者reshape(None);# 检测det任务, neck可以是FPN、BIFPN等;# 分类cls任务, neck是none.if 'Neck' not in config or config['Neck'] is None:self.use_neck = Falseelse:self.use_neck = Trueconfig['Neck']['in_channels'] = in_channelsself.neck = build_neck(config['Neck'])in_channels = self.neck.out_channels# ==========构建head==========if 'Head' not in config or config['Head'] is None:self.use_head = Falseelse:self.use_head = Trueconfig["Head"]['in_channels'] = in_channelsself.head = build_head(config["Head"])self.return_all_feats = config.get("return_all_feats", False)def forward(self, x, data=None):# 以rec任务为例,输入x, 即data['image']的shape为[bs,3,48,320], # data['label_ctc']的shape为[bs,30]# data['label_sar']的shape为[bs,30]# data['length']的shape为[bs]# data['valid_ratio']的shape为[bs]y = dict()if self.use_transform:x = self.transform(x)# 以det任务为例,骨干网络MobileNetv3_large输出为列表# 特征图大小分别为原图的1/4, 1/8, 1/16, 1/32# [bs, 16, 160, 160], [bs, 24, 80, 80], [bs, 56, 40, 40], [bs, 480, 20, 20]# 以rec任务为例,骨干网络MobileNetV1Enhance输出为[bs, 512, 1, 40]if self.use_backbone:x = self.backbone(x)if isinstance(x, dict):y.update(x)else:y["backbone_out"] = xfinal_name = "backbone_out"# 以det任务为例,Neck网络DBFPN输出为特征图为原图的1/4大小 # [bs, 256, 160, 160]if self.use_neck:x = self.neck(x)if isinstance(x, dict):y.update(x)else:y["neck_out"] = xfinal_name = "neck_out"# 以det任务为例,Head网络DBHead输出为字典# 特征图大小为原图的大小,{'maps': y}  [bs, 3, 160, 160]# 以rec任务为例,Head网络MultiHead(CTCHead + SARHead)输出为字典# 'ctc_neck': [bs, 40, 64]# 'ctc_head': [bs, 40, 35], 35个字符是因为character_dict_path + blank + " "# 'sar_head': [bs, 30, 36], 36个字符是因为character_dict_path + " " + "<UKN>" + "<BOS/EOS>" + "<PAD>"if self.use_head:x = self.head(x, targets=data)if isinstance(x, dict) and 'ctc_neck' in x.keys():y["neck_out"] = x["ctc_neck"]y["head_out"] = xelif isinstance(x, dict):y.update(x)else:y["head_out"] = xfinal_name = "head_out"if self.return_all_feats:if self.training:return yelif isinstance(x, dict):return xelse:return {final_name: x}else:return x

build_backbone函数

__all__ = ["build_backbone"]def build_backbone(config, model_type):if model_type == "det" or model_type == "table":from .det_mobilenet_v3 import MobileNetV3from .det_resnet import ResNetfrom .det_resnet_vd import ResNet_vdfrom .det_resnet_vd_sast import ResNet_SASTfrom .det_pp_lcnet import PPLCNetsupport_dict = ["MobileNetV3", "ResNet", "ResNet_vd", "ResNet_SAST", "PPLCNet"]if model_type == "table":from .table_master_resnet import TableResNetExtrasupport_dict.append('TableResNetExtra')elif model_type == "rec" or model_type == "cls":from .rec_mobilenet_v3 import MobileNetV3from .rec_resnet_vd import ResNetfrom .rec_resnet_fpn import ResNetFPNfrom .rec_mv1_enhance import MobileNetV1Enhancefrom .rec_nrtr_mtb import MTBfrom .rec_resnet_31 import ResNet31from .rec_resnet_32 import ResNet32from .rec_resnet_45 import ResNet45from .rec_resnet_aster import ResNet_ASTERfrom .rec_micronet import MicroNetfrom .rec_efficientb3_pren import EfficientNetb3_PRENfrom .rec_svtrnet import SVTRNetfrom .rec_vitstr import ViTSTRfrom .rec_resnet_rfl import ResNetRFLfrom .rec_densenet import DenseNetsupport_dict = ['MobileNetV1Enhance', 'MobileNetV3', 'ResNet', 'ResNetFPN', 'MTB','ResNet31', 'ResNet45', 'ResNet_ASTER', 'MicroNet','EfficientNetb3_PREN', 'SVTRNet', 'ViTSTR', 'ResNet32', 'ResNetRFL','DenseNet']elif model_type == 'e2e':from .e2e_resnet_vd_pg import ResNetsupport_dict = ['ResNet']elif model_type == 'kie':from .kie_unet_sdmgr import Kie_backbonefrom .vqa_layoutlm import LayoutLMForSer, LayoutLMv2ForSer, LayoutLMv2ForRe, LayoutXLMForSer, LayoutXLMForResupport_dict = ['Kie_backbone', 'LayoutLMForSer', 'LayoutLMv2ForSer','LayoutLMv2ForRe', 'LayoutXLMForSer', 'LayoutXLMForRe']elif model_type == 'table':from .table_resnet_vd import ResNetfrom .table_mobilenet_v3 import MobileNetV3support_dict = ['ResNet', 'MobileNetV3']else:raise NotImplementedErrormodule_name = config.pop('name')assert module_name in support_dict, Exception("when model typs is {}, backbone only support {}".format(model_type, support_dict))module_class = eval(module_name)(**config)return module_class

MobileNetV3

from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr__all__ = ['MobileNetV3']def make_divisible(v, divisor=8, min_value=None):if min_value is None:min_value = divisornew_v = max(min_value, int(v+divisor/2)//divisor*divisor)if new_v < 0.9*v:new_v += divisorreturn new_vclass ConvBNLayer(nn.Layer):def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1, if_act=True, act=None):super(ConvBNLayer, self).__init__()self.if_act = if_actself.act = actself.conv = nn.Conv2D(in_channels=in_channels,out_channels=out_channels,kernel_size=kernel_size,stride=stride,padding=padding,groups=groups,bias_attr=False)self.bn = nn.BatchNorm(num_channels=out_channels, act=None)def forward(self, x):x = self.conv(x)x = self.bn(x)if self.if_act:if self.act == "relu":x = F.relu(x)elif self.act == "hardswish":x = F.hardswish(x)else:print("The activation function({}) is selected incorrectly.".format(self.act))exit()return xclass ResidualUnit(nn.Layer):def __init__(self, in_channels, mid_channels, out_channels, kernel_size, stride, use_se, act=None):super(ResidualUnit, self).__init__()self.if_shortcut = stride == 1 and in_channels == out_channelsself.if_se = use_se# 1x1卷积self.expand_conv = ConvBNLayer(in_channels=in_channels,out_channels=mid_channels,kernel_size=1,stride=1,padding=0,if_act=True,act=act)# 膨胀卷积self.bottleneck_conv = ConvBNLayer(in_channels=mid_channels,out_channels=mid_channels,kernel_size=kernel_size,stride=stride,padding=int((kernel_size - 1) // 2),groups=mid_channels,if_act=True,act=act)# SE注意力机制if self.if_se:self.mid_se = SEModule(mid_channels)# 1x1卷积self.linear_conv = ConvBNLayer(in_channels=mid_channels,out_channels=out_channels,kernel_size=1,stride=1,padding=0,if_act=False,act=None)def forward(self, inputs):x = self.expand_conv(inputs)x = self.bottleneck_conv(x)if self.if_se:x = self.mid_se(x)x = self.linear_conv(x)if self.if_shortcut:x = paddle.add(inputs, x)return xclass SEModule(nn.Layer):def __init__(self, in_channels, reduction=4):super(SEModule, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2D(1)self.conv1 = nn.Conv2D(in_channels=in_channels,out_channels=in_channels // reduction,kernel_size=1,stride=1,padding=0)self.conv2 = nn.Conv2D(in_channels=in_channels // reduction,out_channels=in_channels,kernel_size=1,stride=1,padding=0)def forward(self, inputs):outputs = self.avg_pool(inputs)outputs = self.conv1(outputs)outputs = F.relu(outputs)outputs = self.conv2(outputs)outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)return inputs * outputsclass MobileNetV3(nn.Layer):def __init__(self, in_channels=3, model_name='large', scale=0.5, disable_se=False, **kwargs):super(MobileNetV3, self).__init__()# 不启用注意力机制SEself.disable_se = disable_seif model_name == "large":cfg = [# k, exp, c,  se,     nl,  s,[3, 16, 16, False, 'relu', 1],[3, 64, 24, False, 'relu', 2],[3, 72, 24, False, 'relu', 1],[5, 72, 40, True, 'relu', 2],[5, 120, 40, True, 'relu', 1],[5, 120, 40, True, 'relu', 1],[3, 240, 80, False, 'hardswish', 2],[3, 200, 80, False, 'hardswish', 1],[3, 184, 80, False, 'hardswish', 1],[3, 184, 80, False, 'hardswish', 1],[3, 480, 112, True, 'hardswish', 1],[3, 672, 112, True, 'hardswish', 1],[5, 672, 160, True, 'hardswish', 2],[5, 960, 160, True, 'hardswish', 1],[5, 960, 160, True, 'hardswish', 1],]cls_ch_squeeze = 960elif model_name == "small":cfg = [# k, exp, c,  se,     nl,  s,[3, 16, 16, True, 'relu', 2],[3, 72, 24, False, 'relu', 2],[3, 88, 24, False, 'relu', 1],[5, 96, 40, True, 'hardswish', 2],[5, 240, 40, True, 'hardswish', 1],[5, 240, 40, True, 'hardswish', 1],[5, 120, 48, True, 'hardswish', 1],[5, 144, 48, True, 'hardswish', 1],[5, 288, 96, True, 'hardswish', 2],[5, 576, 96, True, 'hardswish', 1],[5, 576, 96, True, 'hardswish', 1],]cls_ch_squeeze = 576else:raise NotImplementedError("mode[" + model_name + "_model] is not implemented!")supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]assert scale in supported_scale, "supported scale are {} but input scale is {}".format(supported_scale, scale)inplanes = 16# conv1self.conv = ConvBNLayer(in_channels=in_channels,out_channels=make_divisible(inplanes * scale),kernel_size=3,stride=2,padding=1,groups=1,if_act=True,act='hardswish')self.stages = []self.out_channels = []block_list = []i = 0inplanes = make_divisible(inplanes * scale)# k表示卷积核大小,kernal_size;# exp表示隐藏层通道数;# c表示输出通道数;# se表示是否使用SENet;# nl表示激活函数;# s表示stride;for (k, exp, c, se, nl, s) in cfg:se = se and not self.disable_sestart_idx = 2 if model_name == 'large' else 0if s == 2 and i > start_idx:self.out_channels.append(inplanes)self.stages.append(nn.Sequential(*block_list))block_list = []block_list.append(ResidualUnit(in_channels=inplanes,mid_channels=make_divisible(scale * exp),out_channels=make_divisible(scale * c),kernel_size=k,stride=s,use_se=se,act=nl))inplanes = make_divisible(scale * c)i += 1block_list.append(ConvBNLayer(in_channels=inplanes,out_channels=make_divisible(scale * cls_ch_squeeze),kernel_size=1,stride=1,padding=0,groups=1,if_act=True,act='hardswish'))self.stages.append(nn.Sequential(*block_list))self.out_channels.append(make_divisible(scale * cls_ch_squeeze))for i, stage in enumerate(self.stages):self.add_sublayer(sublayer=stage, name="stage{}".format(i))def forward(self, x):# 输入shape [16, 3, 640, 640]x = self.conv(x)    out_list = []# 有四个stage, 1/4, 1/8, 1/16, 1/32# [bs, 16, 160, 160]# [bs, 24, 80, 80]# [bs, 56, 40, 40]# [bs, 480, 20, 20]for stage in self.stages:x = stage(x)out_list.append(x)return out_list

build_neck函数

__all__ = ['build_neck']def build_neck(config):from .db_fpn import DBFPN, RSEFPN, LKPANfrom .east_fpn import EASTFPNfrom .sast_fpn import SASTFPNfrom .rnn import SequenceEncoderfrom .pg_fpn import PGFPNfrom .table_fpn import TableFPNfrom .fpn import FPNfrom .fce_fpn import FCEFPNfrom .pren_fpn import PRENFPNfrom .csp_pan import CSPPANfrom .ct_fpn import CTFPNfrom .fpn_unet import FPN_UNetfrom .rf_adaptor import RFAdaptorsupport_dict = ['FPN', 'FCEFPN', 'LKPAN', 'DBFPN', 'RSEFPN', 'EASTFPN', 'SASTFPN','SequenceEncoder', 'PGFPN', 'TableFPN', 'PRENFPN', 'CSPPAN', 'CTFPN','RFAdaptor', 'FPN_UNet']module_name = config.pop('name')assert module_name in support_dict, Exception('neck only support {}'.format(support_dict))module_class = eval(module_name)(**config)return module_class

build_head函数

__all__ = ['build_head']def build_head(config):# det headfrom .det_db_head import DBHeadfrom .det_east_head import EASTHeadfrom .det_sast_head import SASTHeadfrom .det_pse_head import PSEHeadfrom .det_fce_head import FCEHeadfrom .e2e_pg_head import PGHeadfrom .det_ct_head import CT_Head# rec headfrom .rec_ctc_head import CTCHeadfrom .rec_att_head import AttentionHeadfrom .rec_srn_head import SRNHeadfrom .rec_nrtr_head import Transformerfrom .rec_sar_head import SARHeadfrom .rec_aster_head import AsterHeadfrom .rec_pren_head import PRENHeadfrom .rec_multi_head import MultiHeadfrom .rec_spin_att_head import SPINAttentionHeadfrom .rec_abinet_head import ABINetHeadfrom .rec_robustscanner_head import RobustScannerHeadfrom .rec_visionlan_head import VLHeadfrom .rec_rfl_head import RFLHeadfrom .rec_can_head import CANHead# cls headfrom .cls_head import ClsHead# kie headfrom .kie_sdmgr_head import SDMGRHead# table headfrom .table_att_head import TableAttentionHead, SLAHeadfrom .table_master_head import TableMasterHeadsupport_dict = ['DBHead', 'PSEHead', 'FCEHead', 'EASTHead', 'SASTHead', 'CTCHead','ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer','TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead','MultiHead', 'ABINetHead', 'TableMasterHead', 'SPINAttentionHead','VLHead', 'SLAHead', 'RobustScannerHead', 'CT_Head', 'RFLHead','DRRGHead', 'CANHead']if config['name'] == 'DRRGHead':from .det_drrg_head import DRRGHeadsupport_dict.append('DRRGHead')module_name = config.pop('name')assert module_name in support_dict, Exception('head only support {}'.format(support_dict))module_class = eval(module_name)(**config)return module_class

这篇关于PaddleOCR识别框架解读[04] 文本检测det模型构建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/783310

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费