scikit-learn 逻辑回归实现乳腺癌检测

2024-03-07 07:58

本文主要是介绍scikit-learn 逻辑回归实现乳腺癌检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随书代码,阅读笔记

  • 载入数据
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np# 载入数据
from sklearn.datasets import load_breast_cancercancer = load_breast_cancer()
X = cancer.data
y = cancer.target
print('data shape: {0}; no. positive: {1}; no. negative: {2}'.format(X.shape, y[y==1].shape[0], y[y==0].shape[0]))
print(cancer.data[0])#准备测试集和训练集
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

一共有569个样本,每个样本有30个特征,其中357个阳性,212个阴性(y=0)

  • 模型训练
# 模型训练
from sklearn.linear_model import LogisticRegressionmodel = LogisticRegression()
model.fit(X_train, y_train)train_score = model.score(X_train, y_train)
test_score = model.score(X_test, y_test)
print('train score: {train_score:.6f}; test score: {test_score:.6f}'.format(train_score=train_score, test_score=test_score))#output: train score: 0.953846; test score: 0.956140
  • 预测
# 样本预测
y_pred = model.predict(X_test)
print('matchs: {0}/{1}'.format(np.equal(y_pred, y_test).shape[0], y_test.shape[0]))# 预测概率:找出低于 90% 概率的样本个数
y_pred_proba = model.predict_proba(X_test)
print('sample of predict probability: {0}'.format(y_pred_proba[0]))
y_pred_proba_0 = y_pred_proba[:, 0] > 0.1 
result = y_pred_proba[y_pred_proba_0]
y_pred_proba_1 = result[:, 1] > 0.1
print(result[y_pred_proba_1])

模型优化

import time
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline# 增加多项式预处理
def polynomial_model(degree=1, **kwarg):polynomial_features = PolynomialFeatures(degree=degree,include_bias=False)logistic_regression = LogisticRegression(**kwarg)pipeline = Pipeline([("polynomial_features", polynomial_features),("logistic_regression", logistic_regression)])return pipelinemodel = polynomial_model(degree=2, penalty='l1')start = time.clock()
model.fit(X_train, y_train)train_score = model.score(X_train, y_train)
cv_score = model.score(X_test, y_test)
print('elaspe: {0:.6f}; train_score: {1:0.6f}; cv_score: {2:.6f}'.format(time.clock()-start, train_score, cv_score))#output : train_score: 1.000000; cv_score: 0.973684

新特征

根据原始的30个特征,使用多项式组合出来495个特征,其中97个是有用的。

logistic_regression = model.named_steps['logistic_regression']
print('model parameters shape: {0}; count of non-zero element: {1}'.format(logistic_regression.coef_.shape, np.count_nonzero(logistic_regression.coef_)))#output:model parameters shape: (1, 495); count of non-zero element: 97

学习率曲线

from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
title = 'Learning Curves (degree={0}, penalty={1})'
degrees = [1, 2]
penalty = 'l1'start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, polynomial_model(degree=degrees[i], penalty=penalty), title.format(degrees[i], penalty), X, y, ylim=(0.8, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))


penalty = 'l2'start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, polynomial_model(degree=degrees[i], penalty=penalty, solver='lbfgs'), title.format(degrees[i], penalty), X, y, ylim=(0.8, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))

扩展阅读

这篇关于scikit-learn 逻辑回归实现乳腺癌检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782854

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整