本文主要是介绍scikit-learn 逻辑回归实现乳腺癌检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
随书代码,阅读笔记
- 载入数据
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np# 载入数据
from sklearn.datasets import load_breast_cancercancer = load_breast_cancer()
X = cancer.data
y = cancer.target
print('data shape: {0}; no. positive: {1}; no. negative: {2}'.format(X.shape, y[y==1].shape[0], y[y==0].shape[0]))
print(cancer.data[0])#准备测试集和训练集
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
一共有569个样本,每个样本有30个特征,其中357个阳性,212个阴性(y=0)
- 模型训练
# 模型训练
from sklearn.linear_model import LogisticRegressionmodel = LogisticRegression()
model.fit(X_train, y_train)train_score = model.score(X_train, y_train)
test_score = model.score(X_test, y_test)
print('train score: {train_score:.6f}; test score: {test_score:.6f}'.format(train_score=train_score, test_score=test_score))#output: train score: 0.953846; test score: 0.956140
- 预测
# 样本预测
y_pred = model.predict(X_test)
print('matchs: {0}/{1}'.format(np.equal(y_pred, y_test).shape[0], y_test.shape[0]))# 预测概率:找出低于 90% 概率的样本个数
y_pred_proba = model.predict_proba(X_test)
print('sample of predict probability: {0}'.format(y_pred_proba[0]))
y_pred_proba_0 = y_pred_proba[:, 0] > 0.1
result = y_pred_proba[y_pred_proba_0]
y_pred_proba_1 = result[:, 1] > 0.1
print(result[y_pred_proba_1])
模型优化
import time
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline# 增加多项式预处理
def polynomial_model(degree=1, **kwarg):polynomial_features = PolynomialFeatures(degree=degree,include_bias=False)logistic_regression = LogisticRegression(**kwarg)pipeline = Pipeline([("polynomial_features", polynomial_features),("logistic_regression", logistic_regression)])return pipelinemodel = polynomial_model(degree=2, penalty='l1')start = time.clock()
model.fit(X_train, y_train)train_score = model.score(X_train, y_train)
cv_score = model.score(X_test, y_test)
print('elaspe: {0:.6f}; train_score: {1:0.6f}; cv_score: {2:.6f}'.format(time.clock()-start, train_score, cv_score))#output : train_score: 1.000000; cv_score: 0.973684
新特征
根据原始的30个特征,使用多项式组合出来495个特征,其中97个是有用的。
logistic_regression = model.named_steps['logistic_regression']
print('model parameters shape: {0}; count of non-zero element: {1}'.format(logistic_regression.coef_.shape, np.count_nonzero(logistic_regression.coef_)))#output:model parameters shape: (1, 495); count of non-zero element: 97
学习率曲线
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
title = 'Learning Curves (degree={0}, penalty={1})'
degrees = [1, 2]
penalty = 'l1'start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, polynomial_model(degree=degrees[i], penalty=penalty), title.format(degrees[i], penalty), X, y, ylim=(0.8, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))
penalty = 'l2'start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, polynomial_model(degree=degrees[i], penalty=penalty, solver='lbfgs'), title.format(degrees[i], penalty), X, y, ylim=(0.8, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))
扩展阅读
这篇关于scikit-learn 逻辑回归实现乳腺癌检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!