微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载

本文主要是介绍微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载:https://mp.weixin.qq.com/s/xsL9GuLs7b3nRF8VeRtinQ

建立在高通量测序基础上的微生物群落研究,当前主要有三大类:基于16S/18S/ITS等扩增子做物种分类的Metataxanomics、鸟枪法打断全基因组DNA序列的Metagenomics和基于mRNA信息的宏转录组方法Meta-transcriptomics。

 

16S,也即是我们通常所说的微生物多样性,是一种相对快速和经济适用的方法,但是PCR导致了偏好的产生,这就降低了注释准确度。此外,由于原核、真核生物的“分类标签”完全不同,即使细菌和古菌的16S也相去甚远,以进化快著称的病毒更难以捕获。宏基因组有效避免了扩增偏差,由于是直接打断,理论上不限制物种(细菌、真菌、古菌、真核生物等,事实上当前宏基因组测序多还是以细菌为主),可能组装获得新基因乃至新物种信息,但根据取样情况可能存在少量或大量的宿主污染,因需组装,数据量要求大,成本贵、周期长。宏转录组的好处是,跳出了DNA层面的束缚,可以获得实时活跃的、真正对群落有贡献的基因和通路,然而mRNA不如DNA稳定,此外多纯化和扩增的步骤也可能引入错误。

 

表1 三种技术的选择策略

 

关于16S的全流程,我在生信者言的千聊直播间里和大家做过系列课程分享,ppt可联系小秘书Anymore(微信号:genegogo007)获取,另外,专门针对16S的生信分析,也给大家做过一个详细的工具单和点评:《9个模块+40余款软件+老司机辣评 | 16S信息分析流程软件和数据库合集》。这里就不具体展开讲了。

 

下面来说说大家关注的宏基因组。宏基因组这部分,生信者言李木子童鞋也曾经给大家做过系统梳理和点评:《精选30余款宏基因组分析软件,来自老司机的使用经验总结(上篇)》、《精选30余款宏基因组分析软件,来自老司机的使用经验总结(中篇)》、《精选30余款宏基因组分析软件,来自老司机的使用经验总结(下篇)》、《句句干货!一文读懂宏基因组binning》。

 

在17年发表于Briefings in Bioinformatics的一篇题为《A review of methods and databases for metagenomic classification and assembly》的综述中,也有很多可参考的思路和软件汇总。

 

 

 

 

宏基因组经典流程:环境微生物样本--Total DNA提取--文库构建--上机测序(经典短读长: illumina系列;长读长选择: PB, ONT)--数据质控(去除低质量和接头等,去除宿主基因组等干扰信息)--宏基因组组装--Contig Binning--基因组重建--分类注释(可基于reads、contig、bins、还原出来的基因组做物种注释)--其他下游分析。

 

 

 

质控常用工具列表:

 

 

 

分类注释工具汇总:

 

 

 

组装和binning工具汇总:

 

 

嫌软件太多、想要主流软件推荐和评测的童鞋,可以转回去看上一段给大家写出来的来自李木子老师的流程软件评测文。

 

此外,再给大家推荐两个流程集成软件,MetAMOS ( https://github.com/marbl/metAMOS ) 和MOCAT2 ( https://github.com/mocat2/mocat2 ) ,有兴趣的小伙伴可以试用下。

 

 

下面我们再扩展一下,如何从宏基因组数据中鉴定病毒序列?15年PeerJ上介绍了一个适用于组装后contig集中病毒序列识别的工具--Virsorter ( https://github.com/simroux/VirSorter ),同年发表在Nucleic Acids Research上的另一篇文章提出了一个能把细菌和病毒序列分别识别鉴定出来的软件--GOTTCHA ( Genomic Origins Through Taxonomic CHAllenge)。16年Microbiome上又报道了一款比Virsorter更适合短contig、真阳性更高的软件--VirFinder ( https://github.com/jessieren/VirFinder ),这块软件主要通过利用细菌和病毒在Kmer上的差异将病毒从宏基因组序列中抽离出来。此外,宏病毒组也有流程集成类软建,如16年发表于BMC genomics的ViromeScan ( https://sourceforge.net/projects/viromescan/ )和15年发表于Scientific Reports上的VIP ( https://github.com/keylabivdc/VIP )等。

 

再说说宏转录组,东拼西凑的日子不好过,现在宏转录组也迎来了自己的专属软件--IMSA+A ( https://github.com/JeremyCoxBMI/IMSA-A )。IMSA+A在17年1月发表于Microbiome,是一种可应用于任意读长宏转录组学数据、可高效在同一份样品中鉴定出细菌、真菌、病毒的准确的分类分析的方法。

 

事实上,在微生物组学研究中,往往不会只使用一种检测方法,多组学联用几乎是各大研究论文必备杀器。宏转录组的单独应用就更少,多需和宏基因组结果结合起来分析。现在的方法多是各组学单独分析,从基因集和功能注释结果做比较,但这样其实并未解决不同组学天上地下十万八千里的误差,算作联合分析也比较牵强。

 

16年底,卢森堡大学Paul Wilmes发表于Genome Biology的一篇Method介绍了一款神器--IMP。IMP把整合宏基因组和宏转录组40多个工具整合在同一个平台上,使用 docker  engine 驱动以确保多系统的兼容性和可重复性。IMP重复性好,同时非常灵活方便,适用于很多宏基因组plus课题,而且相较MOCAT和MetAMOS能提供更多目标基因,给后续其他组学(如宏蛋白组学)研究提供更好基础。

 

在当年的冷泉港会议上Dr. Paul Wilmes也做了多组学联合分析(MuSt)的工具流程(IMP)的报告,有兴趣的小伙伴可以测试下,IMP的home在这里:http://r3lab.uni.lu/web/imp/。

 

微生物组学研究正处在井喷期,研究工具也更新换代的很快,这里总结的,仅可算沧海一粟。欢迎大家留言回复你的使用偏好和心得,或来微信讨论群里一起头脑风暴!

 

参考文献:

1. A review of methods and databases for metagenomic classification and assembly.

2. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline.

3. MOCAT2: a metagenomic assembly, annotation and profiling framework.

4.  VirSorter: mining viral signal from microbial genomic data.

5. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures

6. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.

7. ViromeScan: a new tool for metagenomic viral community profiling.

8. VIP: an integrated pipeline for metagenomics of virus identification and discovery.

9. A fast and robust protocol for metataxonomic analysis using RNAseq data.

10. IMP: a reproducible pipeline for reference-independent integrated metagenomic and metatranscriptomic analyses.

转载于:https://www.cnblogs.com/nkwy2012/p/9961611.html

这篇关于微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781112

相关文章

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

jvm调优常用命令行工具详解

《jvm调优常用命令行工具详解》:本文主要介绍jvm调优常用命令行工具的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一 jinfo命令查看参数1.1 查看jvm参数二 jstack命令2.1 查看现场堆栈信息三 jstat 实时查看堆内存,gc情况3.1

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)

《Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)》:本文主要介绍Java导入、导出excel的相关资料,讲解了使用Java和ApachePOI库将数据导出为Excel文件,包括... 目录前言一、引入Apache POI依赖二、用法&步骤2.1 创建Excel的元素2.3 样式和字体2.

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Redis客户端工具之RedisInsight的下载方式

《Redis客户端工具之RedisInsight的下载方式》RedisInsight是Redis官方提供的图形化客户端工具,下载步骤包括访问Redis官网、选择RedisInsight、下载链接、注册... 目录Redis客户端工具RedisInsight的下载一、点击进入Redis官网二、点击RedisI