微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载

本文主要是介绍微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载:https://mp.weixin.qq.com/s/xsL9GuLs7b3nRF8VeRtinQ

建立在高通量测序基础上的微生物群落研究,当前主要有三大类:基于16S/18S/ITS等扩增子做物种分类的Metataxanomics、鸟枪法打断全基因组DNA序列的Metagenomics和基于mRNA信息的宏转录组方法Meta-transcriptomics。

 

16S,也即是我们通常所说的微生物多样性,是一种相对快速和经济适用的方法,但是PCR导致了偏好的产生,这就降低了注释准确度。此外,由于原核、真核生物的“分类标签”完全不同,即使细菌和古菌的16S也相去甚远,以进化快著称的病毒更难以捕获。宏基因组有效避免了扩增偏差,由于是直接打断,理论上不限制物种(细菌、真菌、古菌、真核生物等,事实上当前宏基因组测序多还是以细菌为主),可能组装获得新基因乃至新物种信息,但根据取样情况可能存在少量或大量的宿主污染,因需组装,数据量要求大,成本贵、周期长。宏转录组的好处是,跳出了DNA层面的束缚,可以获得实时活跃的、真正对群落有贡献的基因和通路,然而mRNA不如DNA稳定,此外多纯化和扩增的步骤也可能引入错误。

 

表1 三种技术的选择策略

 

关于16S的全流程,我在生信者言的千聊直播间里和大家做过系列课程分享,ppt可联系小秘书Anymore(微信号:genegogo007)获取,另外,专门针对16S的生信分析,也给大家做过一个详细的工具单和点评:《9个模块+40余款软件+老司机辣评 | 16S信息分析流程软件和数据库合集》。这里就不具体展开讲了。

 

下面来说说大家关注的宏基因组。宏基因组这部分,生信者言李木子童鞋也曾经给大家做过系统梳理和点评:《精选30余款宏基因组分析软件,来自老司机的使用经验总结(上篇)》、《精选30余款宏基因组分析软件,来自老司机的使用经验总结(中篇)》、《精选30余款宏基因组分析软件,来自老司机的使用经验总结(下篇)》、《句句干货!一文读懂宏基因组binning》。

 

在17年发表于Briefings in Bioinformatics的一篇题为《A review of methods and databases for metagenomic classification and assembly》的综述中,也有很多可参考的思路和软件汇总。

 

 

 

 

宏基因组经典流程:环境微生物样本--Total DNA提取--文库构建--上机测序(经典短读长: illumina系列;长读长选择: PB, ONT)--数据质控(去除低质量和接头等,去除宿主基因组等干扰信息)--宏基因组组装--Contig Binning--基因组重建--分类注释(可基于reads、contig、bins、还原出来的基因组做物种注释)--其他下游分析。

 

 

 

质控常用工具列表:

 

 

 

分类注释工具汇总:

 

 

 

组装和binning工具汇总:

 

 

嫌软件太多、想要主流软件推荐和评测的童鞋,可以转回去看上一段给大家写出来的来自李木子老师的流程软件评测文。

 

此外,再给大家推荐两个流程集成软件,MetAMOS ( https://github.com/marbl/metAMOS ) 和MOCAT2 ( https://github.com/mocat2/mocat2 ) ,有兴趣的小伙伴可以试用下。

 

 

下面我们再扩展一下,如何从宏基因组数据中鉴定病毒序列?15年PeerJ上介绍了一个适用于组装后contig集中病毒序列识别的工具--Virsorter ( https://github.com/simroux/VirSorter ),同年发表在Nucleic Acids Research上的另一篇文章提出了一个能把细菌和病毒序列分别识别鉴定出来的软件--GOTTCHA ( Genomic Origins Through Taxonomic CHAllenge)。16年Microbiome上又报道了一款比Virsorter更适合短contig、真阳性更高的软件--VirFinder ( https://github.com/jessieren/VirFinder ),这块软件主要通过利用细菌和病毒在Kmer上的差异将病毒从宏基因组序列中抽离出来。此外,宏病毒组也有流程集成类软建,如16年发表于BMC genomics的ViromeScan ( https://sourceforge.net/projects/viromescan/ )和15年发表于Scientific Reports上的VIP ( https://github.com/keylabivdc/VIP )等。

 

再说说宏转录组,东拼西凑的日子不好过,现在宏转录组也迎来了自己的专属软件--IMSA+A ( https://github.com/JeremyCoxBMI/IMSA-A )。IMSA+A在17年1月发表于Microbiome,是一种可应用于任意读长宏转录组学数据、可高效在同一份样品中鉴定出细菌、真菌、病毒的准确的分类分析的方法。

 

事实上,在微生物组学研究中,往往不会只使用一种检测方法,多组学联用几乎是各大研究论文必备杀器。宏转录组的单独应用就更少,多需和宏基因组结果结合起来分析。现在的方法多是各组学单独分析,从基因集和功能注释结果做比较,但这样其实并未解决不同组学天上地下十万八千里的误差,算作联合分析也比较牵强。

 

16年底,卢森堡大学Paul Wilmes发表于Genome Biology的一篇Method介绍了一款神器--IMP。IMP把整合宏基因组和宏转录组40多个工具整合在同一个平台上,使用 docker  engine 驱动以确保多系统的兼容性和可重复性。IMP重复性好,同时非常灵活方便,适用于很多宏基因组plus课题,而且相较MOCAT和MetAMOS能提供更多目标基因,给后续其他组学(如宏蛋白组学)研究提供更好基础。

 

在当年的冷泉港会议上Dr. Paul Wilmes也做了多组学联合分析(MuSt)的工具流程(IMP)的报告,有兴趣的小伙伴可以测试下,IMP的home在这里:http://r3lab.uni.lu/web/imp/。

 

微生物组学研究正处在井喷期,研究工具也更新换代的很快,这里总结的,仅可算沧海一粟。欢迎大家留言回复你的使用偏好和心得,或来微信讨论群里一起头脑风暴!

 

参考文献:

1. A review of methods and databases for metagenomic classification and assembly.

2. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline.

3. MOCAT2: a metagenomic assembly, annotation and profiling framework.

4.  VirSorter: mining viral signal from microbial genomic data.

5. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures

6. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.

7. ViromeScan: a new tool for metagenomic viral community profiling.

8. VIP: an integrated pipeline for metagenomics of virus identification and discovery.

9. A fast and robust protocol for metataxonomic analysis using RNAseq data.

10. IMP: a reproducible pipeline for reference-independent integrated metagenomic and metatranscriptomic analyses.

转载于:https://www.cnblogs.com/nkwy2012/p/9961611.html

这篇关于微生物组学数据分析工具综述 | 16S+宏基因组+宏病毒组+宏转录组--转载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781112

相关文章

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

超强的截图工具:PixPin

你是否还在为寻找一款功能强大、操作简便的截图工具而烦恼?市面上那么多工具,常常让人无从选择。今天,想给大家安利一款神器——PixPin,一款真正解放双手的截图工具。 想象一下,你只需要按下快捷键就能轻松完成多种截图任务,还能快速编辑、标注甚至保存多种格式的图片。这款工具能满足这些需求吗? PixPin不仅支持全屏、窗口、区域截图等基础功能,它还可以进行延时截图,让你捕捉到每个关键画面。不仅如此

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr

husky 工具配置代码检查工作流:提交代码至仓库前做代码检查

提示:这篇博客以我前两篇博客作为先修知识,请大家先去看看我前两篇博客 博客指路:前端 ESlint 代码规范及修复代码规范错误-CSDN博客前端 Vue3 项目开发—— ESLint & prettier 配置代码风格-CSDN博客 husky 工具配置代码检查工作流的作用 在工作中,我们经常需要将写好的代码提交至代码仓库 但是由于程序员疏忽而将不规范的代码提交至仓库,显然是不合理的 所

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

10个好用的AI写作工具【亲测免费】

1. 光速写作 传送入口:http://u3v.cn/6hXWYa AI打工神器,一键生成文章&ppt 2. 讯飞写作 传送入口:http://m6z.cn/5ODiSw 3. 讯飞绘文 传送入口:https://turbodesk.xfyun.cn/?channelid=gj3 4. AI排版助手 传送入口:http://m6z.cn/6ppnPn 5. Kim

分享5款免费录屏的工具,搞定网课不怕错过!

虽然现在学生们不怎么上网课, 但是对于上班族或者是没有办法到学校参加课程的人来说,网课还是很重要的,今天,我就来跟大家分享一下我用过的几款录屏软件=,看看它们在录制网课时的表现如何。 福昕录屏大师 网址:https://www.foxitsoftware.cn/REC/ 这款软件给我的第一印象就是界面简洁,操作起来很直观。它支持全屏录制,也支持区域录制,这对于我这种需要同时录制PPT和老师讲

生信圆桌x生信分析平台:助力生物信息学研究的综合工具

介绍 少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 生物信息学的迅速发展催生了众多生信分析平台,这些平台通过集成各种生物信息学工具和算法,极大地简化了数据处理和分析流程,使研究人员能够更高效地从海量生物数据中提取有价值的信息。这些平台通常具备友好的用户界面和强大的计算能力,支持不同类型的生物数据分析,如基因组、转录组、蛋白质组等。

IntelliJ IDEA - 强大的编程工具

哪个编程工具让你的工作效率翻倍? 在日益繁忙的工作环境中,选择合适的编程工具已成为提升开发者工作效率的关键。不同的工具能够帮助我们简化代码编写、自动化任务、提升调试速度,甚至让团队协作更加顺畅。那么,哪款编程工具让你的工作效率翻倍?是智能的代码编辑器,强大的版本控制工具,还是那些让你事半功倍的自动化脚本?在这里我推荐一款好用的编程工具:IntelliJ IDEA。 方向一:工具介绍 Int