本文主要是介绍基于R语言和iris数据集实现随机森林模型及测试应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
基于R语言和iris数据集实现随机森林模型及测试应用
测试应用R代码
#加载随机森林模型库
> library("randomForest")
#加载iris数据集
> data(iris)
> head(iris)# 设置训练数据和标签
t_data <- iris[, -5]
t_labels <- iris[, 5] # 训练随机森林模型
rf_model <- randomForest(t_data, t_labels, ntree=100) # 输出模型摘要
print(rf_model) # 使用模型进行预测
rf_predictions <- predict(rf_model, t_data) # 查看预测结果
print(rf_predictions) # 评估模型性能(这里使用混淆矩阵)
table(t_labels, rf_predictions)# 提取特征重要性
importance <- importance(rf_model) # 将特征重要性转换为数据框,以便使用ggplot2
importance_df <- as.data.frame(importance)
显示随机森林模型中的要素的重要性数据列表
importance_df 内容如下所示:
显示每个特征在随机森林模型中的重要性。
MeanDecreaseGini是特征重要性的度量,
表示当该特征的随机噪声被添加到模型中时,模型精度的平均下降程度。
其中Petal.Length重要性参数值最大为43.56422
其随机森林模型参数如下所示:
> print(rf_model)Call:randomForest(x = t_data, y = t_labels, ntree = 100) Type of random forest: classificationNumber of trees: 100
No. of variables tried at each split: 2OOB estimate of error rate: 6%
Confusion matrix:setosa versicolor virginica class.error
setosa 50 0 0 0.00
versicolor 0 46 4 0.08
virginica 0 5 45 0.10
预测代码
准备一条测试记录进行预测
1 10 6.5 2.8 0.4
准备一条测试记录
t_test<-t_data[1,]
> print(t_test) Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 0.2
> t_test<-t_data[1,]+t_data[2,]
> print(t_test) Sepal.Length Sepal.Width Petal.Length Petal.Width
1 10 6.5 2.8 0.4
#开始预测
> rf_predictions <- predict(rf_model, t_test)
#查看预测结果
> print(rf_predictions)1
setosa
Levels: setosa versicolor virginica
>
预测结果
预测结果值为:setosa
1 10 6.5 2.8 0.4 setosa
iris数据集简介:
包含了150条关于鸢尾花(Iris)的观测记录
Iris数据集是一个常用的分类实验数据集,
由英国统计学家和生物学家Ronald Fisher在1936年收集整理。
它包含了150条关于鸢尾花(Iris)的观测记录,
每条记录包含了4个特征:
花萼长度(Sepal.Length)、
花萼宽度(Sepal.Width)、
花瓣长度(Petal.Length)
和花瓣宽度(Petal.Width)。
这些特征都以浮点数表示,并且都被归一化到0-1的范围内。
根据这些特征,Iris数据集将鸢尾花分为三类:山鸢尾(Setosa)、变色鸢尾(Versicolour)和维吉尼亚鸢尾(Virginica)。
因此,可以通过这4个特征预测鸢尾花卉属于三个种类中的哪一类。
Iris数据集在机器学习领域中非常受欢迎,常被用作分类、聚类等算法的研究和实验。在数据集中,有两个属性:iris.data和iris.target。其中,iris.data是一个矩阵,每一列代表了萼片或花瓣的长宽,一共有4列,每一列代表某个被测量的鸢尾植物,一共有150条记录。而iris.target是一个数组,存储了iris.data中150条记录每条记录属于哪一类鸢尾植物,所以数组的长度是150,数组元素的值因为共有3类鸢尾植物,所以不同值只有3个,分别是0、1、2。
> print(iris)
序号 花萼长度 花萼宽度 花瓣长度 花瓣宽度 鸢尾花类型名称Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa
16 5.7 4.4 1.5 0.4 setosa
17 5.4 3.9 1.3 0.4 setosa
18 5.1 3.5 1.4 0.3 setosa
19 5.7 3.8 1.7 0.3 setosa
20 5.1 3.8 1.5 0.3 setosa
21 5.4 3.4 1.7 0.2 setosa
22 5.1 3.7 1.5 0.4 setosa
23 4.6 3.6 1.0 0.2 setosa
24 5.1 3.3 1.7 0.5 setosa
25 4.8 3.4 1.9 0.2 setosa
26 5.0 3.0 1.6 0.2 setosa
27 5.0 3.4 1.6 0.4 setosa
28 5.2 3.5 1.5 0.2 setosa
29 5.2 3.4 1.4 0.2 setosa
30 4.7 3.2 1.6 0.2 setosa
31 4.8 3.1 1.6 0.2 setosa
32 5.4 3.4 1.5 0.4 setosa
33 5.2 4.1 1.5 0.1 setosa
34 5.5 4.2 1.4 0.2 setosa
35 4.9 3.1 1.5 0.2 setosa
36 5.0 3.2 1.2 0.2 setosa
37 5.5 3.5 1.3 0.2 setosa
38 4.9 3.6 1.4 0.1 setosa
39 4.4 3.0 1.3 0.2 setosa
40 5.1 3.4 1.5 0.2 setosa
41 5.0 3.5 1.3 0.3 setosa
42 4.5 2.3 1.3 0.3 setosa
43 4.4 3.2 1.3 0.2 setosa
44 5.0 3.5 1.6 0.6 setosa
45 5.1 3.8 1.9 0.4 setosa
46 4.8 3.0 1.4 0.3 setosa
47 5.1 3.8 1.6 0.2 setosa
48 4.6 3.2 1.4 0.2 setosa
49 5.3 3.7 1.5 0.2 setosa
50 5.0 3.3 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor
56 5.7 2.8 4.5 1.3 versicolor
57 6.3 3.3 4.7 1.6 versicolor
58 4.9 2.4 3.3 1.0 versicolor
59 6.6 2.9 4.6 1.3 versicolor
60 5.2 2.7 3.9 1.4 versicolor
61 5.0 2.0 3.5 1.0 versicolor
62 5.9 3.0 4.2 1.5 versicolor
63 6.0 2.2 4.0 1.0 versicolor
64 6.1 2.9 4.7 1.4 versicolor
65 5.6 2.9 3.6 1.3 versicolor
66 6.7 3.1 4.4 1.4 versicolor
67 5.6 3.0 4.5 1.5 versicolor
68 5.8 2.7 4.1 1.0 versicolor
69 6.2 2.2 4.5 1.5 versicolor
70 5.6 2.5 3.9 1.1 versicolor
71 5.9 3.2 4.8 1.8 versicolor
72 6.1 2.8 4.0 1.3 versicolor
73 6.3 2.5 4.9 1.5 versicolor
74 6.1 2.8 4.7 1.2 versicolor
75 6.4 2.9 4.3 1.3 versicolor
76 6.6 3.0 4.4 1.4 versicolor
77 6.8 2.8 4.8 1.4 versicolor
78 6.7 3.0 5.0 1.7 versicolor
79 6.0 2.9 4.5 1.5 versicolor
80 5.7 2.6 3.5 1.0 versicolor
81 5.5 2.4 3.8 1.1 versicolor
82 5.5 2.4 3.7 1.0 versicolor
83 5.8 2.7 3.9 1.2 versicolor
84 6.0 2.7 5.1 1.6 versicolor
85 5.4 3.0 4.5 1.5 versicolor
86 6.0 3.4 4.5 1.6 versicolor
87 6.7 3.1 4.7 1.5 versicolor
88 6.3 2.3 4.4 1.3 versicolor
89 5.6 3.0 4.1 1.3 versicolor
90 5.5 2.5 4.0 1.3 versicolor
91 5.5 2.6 4.4 1.2 versicolor
92 6.1 3.0 4.6 1.4 versicolor
93 5.8 2.6 4.0 1.2 versicolor
94 5.0 2.3 3.3 1.0 versicolor
95 5.6 2.7 4.2 1.3 versicolor
96 5.7 3.0 4.2 1.2 versicolor
97 5.7 2.9 4.2 1.3 versicolor
98 6.2 2.9 4.3 1.3 versicolor
99 5.1 2.5 3.0 1.1 versicolor
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica
104 6.3 2.9 5.6 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica
106 7.6 3.0 6.6 2.1 virginica
107 4.9 2.5 4.5 1.7 virginica
108 7.3 2.9 6.3 1.8 virginica
109 6.7 2.5 5.8 1.8 virginica
110 7.2 3.6 6.1 2.5 virginica
111 6.5 3.2 5.1 2.0 virginica
112 6.4 2.7 5.3 1.9 virginica
113 6.8 3.0 5.5 2.1 virginica
114 5.7 2.5 5.0 2.0 virginica
115 5.8 2.8 5.1 2.4 virginica
116 6.4 3.2 5.3 2.3 virginica
117 6.5 3.0 5.5 1.8 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
120 6.0 2.2 5.0 1.5 virginica
121 6.9 3.2 5.7 2.3 virginica
122 5.6 2.8 4.9 2.0 virginica
123 7.7 2.8 6.7 2.0 virginica
124 6.3 2.7 4.9 1.8 virginica
125 6.7 3.3 5.7 2.1 virginica
126 7.2 3.2 6.0 1.8 virginica
127 6.2 2.8 4.8 1.8 virginica
128 6.1 3.0 4.9 1.8 virginica
129 6.4 2.8 5.6 2.1 virginica
130 7.2 3.0 5.8 1.6 virginica
131 7.4 2.8 6.1 1.9 virginica
132 7.9 3.8 6.4 2.0 virginica
133 6.4 2.8 5.6 2.2 virginica
134 6.3 2.8 5.1 1.5 virginica
135 6.1 2.6 5.6 1.4 virginica
136 7.7 3.0 6.1 2.3 virginica
137 6.3 3.4 5.6 2.4 virginica
138 6.4 3.1 5.5 1.8 virginica
139 6.0 3.0 4.8 1.8 virginica
140 6.9 3.1 5.4 2.1 virginica
141 6.7 3.1 5.6 2.4 virginica
142 6.9 3.1 5.1 2.3 virginica
143 5.8 2.7 5.1 1.9 virginica
144 6.8 3.2 5.9 2.3 virginica
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
本blog地址:https://blog.csdn.net/hsg77
这篇关于基于R语言和iris数据集实现随机森林模型及测试应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!