算法沉淀——动态规划之01背包问题(leetcode真题剖析)

2024-03-05 07:36

本文主要是介绍算法沉淀——动态规划之01背包问题(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之01背包问题

  • 01.【模板】01背包
  • 02.分割等和子集
  • 03.目标和
  • 04.最后一块石头的重量 II

01背包问题是一类经典的动态规划问题,通常描述为:有一个固定容量的背包,以及一组物品,每件物品都有重量和价值,目标是找到在背包容量范围内,使得背包中的物品总价值最大的组合。

具体来说,问题的输入包括:

  1. 一个固定容量的背包(通常表示为一个整数W)。
  2. 一组物品,每个物品有两个属性:重量(通常表示为一个整数weight)和价值(通常表示为一个整数value)。
  3. 求解的目标是找到一种放置物品的方式,使得放入背包的物品的总重量不超过背包容量,并且总价值最大。

这个问题的特点是,对于每件物品,你只能选择将其放入背包一次(0-1,因此称为“01背包”),或者不放入背包。不能将物品切割成更小的部分放入背包,要么整个物品放入背包,要么不放入。

动态规划解法

  1. 定义状态: 通常使用二维数组dp[i][j]表示在前i个物品中,背包容量为j时的最大总价值。

  2. 状态转移方程: 考虑第i个物品,可以选择放入背包或者不放入。如果选择放入,那么总价值为dp[i-1][j-weight[i]] + value[i],即前i-1个物品的总价值加上当前物品的价值。如果选择不放入,那么总价值为dp[i-1][j],即前i-1个物品的总价值。因此,状态转移方程为:

    dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])
    

    其中,dp[i-1][j]表示不放入第i个物品,dp[i-1][j-weight[i]] + value[i]表示放入第i个物品。

  3. 初始条件:i=0时,表示前0个物品,总价值为0;当j=0时,表示背包容量为0,总价值也为0。

  4. 遍历顺序: 外层循环遍历物品,内层循环遍历背包容量。

  5. 返回结果: 最终结果存储在dp[N][W]中,其中N为物品数量,W为背包容量。

例子

假设有如下物品:

Copy code解释物品1:重量=2,价值=3
物品2:重量=3,价值=4
物品3:重量=4,价值=5
物品4:重量=5,价值=6

背包容量为W=8,我们要求解在这个条件下的最大总价值。

按照上述动态规划解法,构建状态转移表如下:

luaCopy code解释  重量/价值   0   1   2   3   4   5   6   7   8----------------------------------------------物品0        0   0   0   0   0   0   0   0   0物品1        0   0   3   3   3   3   3   3   3物品2        0   0   3   4   4   7   7   7  10物品3        0   0   3   4   4   7   8   8  11物品4        0   0   3   4   4   7   8   9  11

因此,最终结果为dp[4][8] = 11,表示在背包容量为8的情况下,最大总价值为11。这意味着最优解是选择物品2和物品4放入背包。

01.【模板】01背包

题目链接:https://www.nowcoder.com/practice/fd55637d3f24484e96dad9e992d3f62e?tpId=230&tqId=2032484&ru=/exam/oj&qru=/ta/dynamic-programming/question-ranking&sourceUrl=%2Fexam%2Foj%3Fpage%3D1%26tab%3D%25E7%25AE%2597%25E6%25B3%2595%25E7%25AF%2587%26topicId%3D196

你有一个背包,最多能容纳的体积是V。

现在有n个物品,第i个物品的体积为vi,价值为wi。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

输入描述

第一行两个整数n和V,表示物品个数和背包体积。

接下来n行,每行两个数vi和wi,表示第i个物品的体积和价值。

1≤n,V;vi,wi≤1000

输出描述

输出有两行,第一行输出第一问的答案,第二行输出第二问的答案,如果无解请输出0。

示例1

输入

3 5
2 10
4 5
1 4

输出

14
9

复制

说明:

装第一个和第三个物品时总价值最大,但是装第二个和第三个物品可以使得背包恰好装满且总价值最大。 

示例2

输入

3 8
12 6
11 8
6 8

输出

8
0

说明

装第三个物品时总价值最大但是不满,装满背包无解。 要求O(nV)的时间复杂度,O(V)空间复杂度

思路

第一问:

  1. 状态表示:
    • dp[i][j] 表示从前 i 个物品中挑选,总体积不超过 j 的情况下,所有的选法中能挑选出的最大价值。
  2. 状态转移方程:
    • 对于每个物品,我们有两种选择:
      • 不选第 i 个物品:此时 dp[i][j] = dp[i - 1][j]
      • 选择第 i 个物品:此时需要确保总体积不超过 j - v[i],而且该状态是合法的,即 j >= v[i]dp[i - 1][j - v[i]] 存在。状态转移方程为 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
  3. 初始化:
    • 多加一行,第一行初始化为 0,因为不选任何物品总体积为 0时,价值为 0
  4. 填表顺序:
    • 从上往下,每一行从左往右填表。
  5. 返回值:
    • 返回 dp[n][V],即最后一行最后一列的值。

第二问:

  1. 状态表示:
    • dp[i][j] 表示从前 i 个物品中挑选,总体积正好等于 j 的情况下,所有的选法中能挑选出的最大价值。
  2. 状态转移方程:
    • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
    • 在使用 dp[i - 1][j - v[i]] 时,需要判断 j >= v[i]dp[i - 1][j - v[i]] 是否为 -1
  3. 初始化:
    • 多加一行,第一格初始化为 0,表示正好凑齐体积为 0的背包。
    • 第一行后面的格子初始化为 -1,因为没有物品,无法满足体积大于 0的情况。
  4. 填表顺序:
    • 从上往下,每一行从左往右填表。
  5. 返回值:
    • 由于最后可能凑不成体积为 V 的情况,需要特判。

代码

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;const int N=1002;
int n,V,v[N],w[N];
int dp[N][N];int main() {cin>>n>>V;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++)for(int j=0;j<=V;j++){dp[i][j]=dp[i-1][j];if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}cout<<dp[n][V]<<endl;memset(dp,0,sizeof dp);for(int j=1;j<=V;j++) dp[0][j]=-1;for(int i=1;i<=n;i++)for(int j=0;j<=V;j++){dp[i][j]=dp[i-1][j];if(j>=v[i]&&dp[i-1][j-v[i]]!=-1)dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}cout<<(dp[n][V]==-1?0:dp[n][V])<<endl;
}

优化步骤:

  1. 滚动数组的应用:
    • 在01背包问题中,通过滚动数组可以删去所有的横坐标,因为状态 dp[i][j] 只依赖于上一行的状态 dp[i-1][j]dp[i-1][j-v[i]],因此只需保留一行状态。
  2. 遍历顺序修改:
    • 修改了 j 的遍历顺序,原本的遍历是从 0V,现在改为从 V0。这样做的原因是,如果从 0V 遍历,会使用当前行的 dp[i-1][j-v[i]] 的值,而我们已经在上一步的滚动数组中删除了这一行,所以需要改变遍历顺序,从 V0
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;const int N=1002;
int n,V,v[N],w[N];
int dp[N];int main() {cin>>n>>V;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++)for(int j=V;j>=v[i];j--)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<dp[V]<<endl;memset(dp,0,sizeof dp);for(int j=1;j<=V;j++) dp[j]=-1;for(int i=1;i<=n;i++)for(int j=V;j>=v[i];j--)if(dp[j-v[i]]!=-1)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<(dp[V]==-1?0:dp[V])<<endl;
}

02.分割等和子集

题目链接:https://leetcode.cn/problems/partition-equal-subset-sum/

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

思路

  1. 状态表达:
    • dp[i][j] 表示在前 i 个元素中选择,所有的选法中,能否凑成总和为 j 这个数。
  2. 状态转移方程:
    • 根据最后一个位置的元素,分两种情况讨论:
      • 不选择 nums[i]:此时是否能够凑成总和为 j 取决于前 i-1 个元素的情况,即 dp[i][j] = dp[i-1][j]
      • 选择 nums[i]:如果 nums[i] 小于等于 j,则需要看前 i-1 个元素中是否能凑成总和为 j - nums[i],即 dp[i][j] = dp[i][j] || dp[i-1][j - nums[i]]
  3. 初始化:
    • 第一行表示不选择任何元素,要凑成目标和 j,只有当目标和为 0 时才能做到,因此第一行仅需初始化第一个元素 dp[0][0] = true
  4. 填表顺序:
    • 根据状态转移方程,从上往下填写每一行,每一行的顺序是无所谓的。
  5. 返回值:
    • 根据状态表达,返回 dp[n][aim] 的值,其中 n 表示数组的大小, aim 表示要凑的目标和。
  6. 空间优化:
    • 对于 01 背包类型的问题,可以进行空间上的优化,即删除第一维,并修改第二层循环的遍历顺序。

代码

class Solution {
public:bool canPartition(vector<int>& nums) {int n=nums.size(),sum=0;for(int x:nums) sum+=x;if(sum%2) return false;int aim=sum/2;vector<vector<bool>> dp(n+1,vector<bool>(aim+1));for(int i=0;i<=n;i++) dp[i][0]=true;for(int i=1;i<=n;i++)for(int j=1;j<=aim;j++){dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=dp[i][j]||dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

空间优化

class Solution {
public:bool canPartition(vector<int>& nums) {int n=nums.size(),sum=0;for(int x:nums) sum+=x;if(sum%2) return false;int aim=sum/2;vector<bool> dp(aim+1);dp[0]=true;for(int i=1;i<=n;i++)for(int j=aim;j>=nums[i-1];j--)dp[j]=dp[j]||dp[j-nums[i-1]];return dp[aim];}
};

03.目标和

题目链接:https://leetcode.cn/problems/target-sum/

给你一个非负整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

  1. 状态表示:
    • dp[i][j] 表示在前 i 个数中选,总和正好等于 j,一共有多少种选法。
  2. 状态转移方程:
    • 根据最后一个位置的元素,结合题目的要求,有两种策略:
      • 不选 nums[i]:此时凑成总和 j 的总方案数,要看在前 i-1 个元素中选,凑成总和为 j 的方案数,即 dp[i][j] = dp[i-1][j]
      • 选择 nums[i]:如果 nums[i] 小于等于 j,则需要看前 i-1 个元素中是否能凑成总和为 j - nums[i],即 dp[i][j] += dp[i-1][j - nums[i]]
  3. 初始化:
    • 需要用到上一行的数据,因此初始化第一行,表示不选择任何元素凑成目标和 j。只有当目标和为 0 时才能做到,因此第一行仅需初始化第一个元素 dp[0][0] = 1
  4. 填表顺序:
    • 根据状态转移方程,从上往下填写每一行,每一行的顺序是无所谓的。
  5. 返回值:
    • 根据状态表示,返回 dp[n][aim] 的值,其中 n 表示数组的大小, aim 表示要凑的目标和。

代码

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum=0;for(auto x:nums) sum+=x;int aim=(sum+target)/2;if(aim<0||(sum+target)%2) return 0;int n=nums.size();vector<vector<int>> dp(n+1,vector<int>(aim+1));dp[0][0]=1;for(int i = 1; i <= n; i++) for(int j = 0; j <= aim; j++){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]) dp[i][j] += dp[i - 1][j - nums[i - 1]];}return dp[n][aim];}
};

04.最后一块石头的重量 II

题目链接:https://leetcode.cn/problems/last-stone-weight-ii/

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

思路

  1. 状态表示:
    • dp[i][j] 表示在前 i 个元素中选择,总和不超过 j 的情况下,这些元素的最大和。
  2. 状态转移方程:
    • 根据最后一个位置的元素,结合题目的要求,有两种策略:
      • 不选 stones[i]:此时是否能够凑成总和为 j,要看在前 i-1 个元素中选,能否凑成总和为 j。根据状态表示,此时 dp[i][j] = dp[i-1][j]
      • 选择 stones[i]:这种情况下是有前提条件的,此时的 stones[i] 应该是小于等于 j。因为如果这个元素都比要凑成的总和大,选择它就没有意义。那么是否能够凑成总和为 j,要看在前 i-1 个元素中选,能否凑成总和为 j - stones[i]。根据状态表示,此时 dp[i][j] = dp[i-1][j-stones[i]] + stones[i]
  3. 初始化:
    • 由于需要用到上一行的数据,可以先将第一行初始化。
    • 第一行表示「没有石头」,因此想凑成目标和 j 的最大和都是 0
  4. 填表顺序:
    • 根据状态转移方程,从上往下填写每一行,每一行的顺序是无所谓的。
  5. 返回值:
    • 根据状态表示,找到最接近 sum / 2 的最大和 dp[n][sum / 2]
    • 返回 sum - 2 * dp[n][sum / 2],因为我们要的是两堆石头的差。

代码

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int sum=0;for(int x:stones) sum+=x;int n=stones.size(),m=sum/2;vector<vector<int>> dp(n+1,vector<int>(m+1));for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){dp[i][j]=dp[i-1][j];if(j>=stones[i-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-stones[i-1]]+stones[i-1]);}return sum-2*dp[n][m];}
};

这篇关于算法沉淀——动态规划之01背包问题(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/775750

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交