“羊驼“入侵CV,美团浙大沈春华团队将LLaMA向CV扩展,构建全新基础模型VisionLLaMA

本文主要是介绍“羊驼“入侵CV,美团浙大沈春华团队将LLaMA向CV扩展,构建全新基础模型VisionLLaMA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发:AIWalker

https://arxiv.org/abs/2403.00522
https://github.com/Meituan-AutoML/VisionLLaMA

本文概述

大型语言模型构建在基于Transformer的架构之上来处理文本输入, LLaMA 系列模型在众多开源实现中脱颖而出。类似LLaMa的Transformer可以用来处理2D图像吗?在本文中,我们通过提出一种类似 LLaMA 的朴素和金字塔形式的Transformer来回答这个问题,称为 VisionLLaMA。 VisionLLaMA 是一个统一的通用建模框架,用于解决大多数视觉任务。

我们采用经典的预训练框架在图像感知(尤其是图像生成)任务上对齐有效性进行了充分评估。在大多数情况下,VisionLLaMA表现出了比已有SOTA ViT方案更优的性能。我们相信 VisionLLaMA 可以作为视觉生成和理解的强大新基线模型。

本文贡献

  • 提出一种类似于LLaMA的视觉转换器架构VisionLLaMA,以减少语言和视觉之间的架构差异。
  • 我们研究了两个版式的视觉架构方案(朴素和金字塔),并评估它们在监督和自监督学习场景下的性能。此外,我们还引入了 AS2DRoPE(即自动缩放 2D RoPE),它将旋转位置编码从 1D 扩展到 2D,并利用插值缩放来适应任意分辨率。
  • 在没有花里胡哨的情况下,VisionLLaMA 在图像生成、分类、语义分割和对象检测等许多代表性任务中明显优于广泛使用且经过仔细微调的视觉转换器。大量实验表明,VisionLLaMA 比现有视觉转换器具有更快的收敛速度和更好的性能。

本文方案

朴素版VisionLLaMA延续了ViT的处理流程,核心在于VisionLLaMA模块,见上图。VisionLLaMA与ViT不同之处在于:位置编码自注意力RoPE和SwiGLU激活函数。此外,它仍然使用ViT的LayerNorm,而非RMSNorm。需要注意的是,由于1DRoPE不能很好的扩展到其他分辨率,故作者将其扩展为2维形式,描述如下:

z i j l = M H S A ( A S 2 D R o P E ( L a y e r N o r m ( z i j l − 1 ) ) ) + z i j l − 1 z_{ij}^{l} = MHSA(AS2DRoPE(LayerNorm(z_{ij}^{l-1}))) + z_{ij}^{l-1} zijl=MHSA(AS2DRoPE(LayerNorm(zijl1)))+zijl1
z i j l = S w i G L U ( L a y e r N o r m ( z i j l ) ) + z i j l z_{ij}^{l} = SwiGLU(LayerNorm(z_{ij}^l)) + z_{ij}^{l} zijl=SwiGLU(LayerNorm(zijl))+zijl

金字塔VisionLLaMA

更进一步,类似SwinT,作者还构建了一个金字塔版本的VisionLLaMA。在本文中,我们选择更强的基线 Twins 来探索如何在严格控制的设置下构建强大的金字塔变压器。 Twins 的原始架构利用了条件位置编码和以局部和全局注意力的形式进行交错的局部-全局信息交换。这些组件可以在各种变压器中找到,这意味着按照我们的方法在其他金字塔变压器变体中应用 VisionLLaMA 并不困难。请注意,我们的目标不是发明一种新颖的金字塔视觉转换器,而是展示我们如何在现有设计的基础上调整 VisionLLaMA 的基本设计。因此,我们只是遵循对架构和超参数进行最小的修改。

需要注意:我们删除了金字塔 VisionLLaMA 中的条件位置编码,因为 AS2DRoPE 已经包含位置信息。此外,我们还删除了类标记并在分类头之前使用 GAP(全局平均池)。

Training or Inference Beyond Sequence Length

处理不同的输入分辨率是视觉任务中的常见要求。卷积神经网络使用滑动窗口机制来处理可变长度。相反,大多数视觉转换器应用局部窗口操作或插值。例如,DeiT在不同分辨率上训练时采用双三次插值。 CPVT使用基于卷积的位置编码。

对于RoPE,作者尝试将其从1D扩展至2D形式。给定 x i j ∈ R d x_{ij} \in R^d xijRd,其位置编码为 x i j P E = R i j x i j x_{ij}^{PE} = R_{ij} x_{ij} xijPE=Rijxij,对角矩阵如下:

本文实验

图像生成

图像分类

语义分割

COCO检测

推荐阅读

  1. 入局CV,Mamba再显神威!华科王兴刚团队首次将Mamba引入ViT,更高精度、更快速度、更低显存!
  2. Swin版VMamba来了!精度再度提升,VMamba-S达成83.5%,超越Swin-S,已开源!
  3. CVPR2023 InternImage已开源 | 注入新机制,探索视觉大模型,达成COCO新纪录65.4mAP!
  4. CVPR2022 | RepLKNet: 大核卷积+结构重参数让CNN再次伟大
  5. DCNv4来袭,更快收敛、更高速度、更高性能!

这篇关于“羊驼“入侵CV,美团浙大沈春华团队将LLaMA向CV扩展,构建全新基础模型VisionLLaMA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/775467

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]