AI加速引擎PAI-TorchAcc:OLMo训练加速最佳实践

2024-03-05 04:12

本文主要是介绍AI加速引擎PAI-TorchAcc:OLMo训练加速最佳实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:黄奕桐、沈雯婷、艾宝乐、王昂、李永

摘要

  • 阿里云机器学习平台PAI开发的Pytorch训练加速框架PAI-TorchAcc已接入最新开源的大语言模型 OLMo。
  • 在保证模型效果和易用性的前提下,PAI-TorchAcc相对 PyTorch 性能在 OLMo 1B 上加速比达到 1.64X,在 OLMo 7B 上加速比达到 1.52X。
  • 本文分析了 PAI-TorchAcc 的性能收益来源。

1、PAI-TorchAcc 简介

PAI-TorchAcc(Torch Accelerator)是阿里云机器学习平台开发的Pytorch上的大模型训练加速框架。

PAI-TorchAcc借助社区PyTorch/XLA,通过 GraphCapture 技术将 Pytorch 动态图转换为静态计算图,基于计算图进行分布式优化、计算优化、显存优化等,为包括大语言模型在内的Pytorch上的模型提供高效训练支持。相比于社区Pytorch/XLA,PAI-TorchAcc具有更好的易用性、更高的性能和更丰富的功能。更详细的介绍可以见文章:AI加速引擎PAI-TorchAcc:整体介绍与性能概述。

2、完全开源的 OLMo 模型

OLMo (Open Language Model) 是由艾伦人工智能研究所等机构发表的完全开源的大语言模型。OLMo 模型提供了完整的训练数据集、代码、checkpoint 等,几乎完全开源了一个大语言模型从零开始训练所需的代码和数据。不仅如此,OLMo 模型在多项核心指标上接近而且部分超过 LLAMA2 模型。

3、如何使用 PAI-TorchAcc 加速 OLMo 模型训练?

通过 PAI-TorchAcc 加速模型训练一般需要三个步骤:

  1. 定义 torchacc.Config,并指定加速选项。
  2. 调用 torchacc.accelerate,并传入model和config,完成加速训练的准备。
  3. 通过torchacc.AsyncLoader对 torch dataset_loader 进行封装,加速数据加载。
# 定义 model 和 dataloader
model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-1B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B", use_fast=False, trust_remote_code=True)
train_loader = get_dataloader(tokenizer)# 定义 TorchAcc Config
config = torchacc.Config()
config.compute.bf16 = True # 开启 bf16
config.compute.acc_scaled_dot_attn = True # 自动替换 Torch ScaledDot 为torchacc flash attn 版本
config.dist.fsdp.size = torchacc.dist.world_size() # 开启 FSDP,设置 FSDP 数目
config.dist.fsdp.wrap_layer_cls = {"OlmoSequentialBlock"} # 将OLMo模型的decoder layer进行FSDP封装# 一行代码加速模型
model = torchacc.accelerate(model, config)# 异步加速数据加载
train_loader = torchacc.AsyncLoader(train_loader, model.device)# training loop
...

阿里云 DSW Gallery 现在有更完整的 OLMo 模型加速示例:TorchAcc加速OLMo模型训练。

4、PAI-TorchAcc 的性能表现

以单机 8 卡 A100 为例,在 OLMo 1B 上,PAI-TorchAcc 相比 PyTorch FSDP 加速比为 1.64X;在 OLMo 7B 上,PAI-TorchAcc 相比 PyTorch FSDP 加速比为 1.52X。

图 1: PAI-TorchAcc 相比 PyTorch FSDP 在 OLMo 模型上的性能提升

5、PAI-TorchAcc 为何这么快?

在 OLMo 模型的性能对比中,PAI-TorchAcc和 PyTorch 都采用相同的分布式策略 FSDP(ZeRO-3)。PAI-TorchAcc 通过计算优化、通信优化、显存优化等,在 OLMo 7B 上相比 PyTorch 达到了 1.52X 的加速比。下面我们以 OLMo 7B 为例分析 PAI-TorchAcc 的性能收益来源。

计算优化&通信优化

为了方便对比,我们将 PAI-TorchAcc和 PyTorch 的 micro batch size都设置为 2 进行对比。

从图 2 中可以看出,通过计算优化,PAI-TorchAcc 将访存密集型算子的时间优化为 PyTorch 对应算子时间的 45.56%,整体的加速比约为 1.25X。通过通信优化,PAI-TorchAcc 能够将计算和通信更好进行 overlap,将没有 overlap 的通信占整体时间的占比从 8.19%降低到 2.43%。

通过计算优化&通信优化,PAI-TorchAcc 相比PyTorch达到了 1.32X 的加速比。

图 2: micro batch size=2 时,PAI-TorchAcc 相比 PyTorch FSDP 在 OLMo 7B 上的性能提升

显存优化

在 PAI-TorchAcc 中,由于 PyTorch 模型已经转换为静态计算图,所以可以使用比较多的显存优化方法。例如,通过对算子的执行顺序进行调整,可以得到更小的显存峰值;通过更优的显存分配算法,可以让显存碎片更少,减少显存使用;通过 patten match 等方式将 attention 替换为使用显存更少的 flash attention 等等。

通过显存优化,PAI-TorchAcc 的最大 micro batch size 能够达到 4,而 PyTorch 的最大 micro batch size 只能达到 2,这使得PAI-TorchAcc 能够获得更高的性能加速比,这一部分的性能收益主要来自于计算密集型算子。

如图 3 所示,PAI-TorchAcc micro batch size=4 相比 micro batch size=2 的吞吐加速比为 1.15X,这使得PAI-TorchAcc 相比 PyTorch 最终达到了 1.52X 的加速比。

图 3: 在不同 micro batch size 下,PAI-TorchAcc 相比 PyTorch FSDP 在 OLMo 7B 上的性能提升

6 总结

本文介绍了如何使用 PAI-TorchAcc 加速 OLMo 模型训练,分析了PAI-TorchAcc 的性能收益来源。实际上,PAI-TorchAcc可以通过并行化策略、显存优化、计算优化和调度优化等方法来加速更多的大语言模型训练,目前已接入常见的开源大模型,包括LLaMA、LLaMA-2、BaiChuan、ChatGLM、QWen等。除了大语言模型之外,PAI-TorchAcc也易于接入视觉类、语音类模型,并大幅度提升训练性能。欢迎在阿里云上使用该产品。

这篇关于AI加速引擎PAI-TorchAcc:OLMo训练加速最佳实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/775302

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、