NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调

2024-03-03 22:40

本文主要是介绍NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  以往,我们在使用HuggingFace在训练BERT模型时,代码写得比较复杂,涉及到数据处理、token编码、模型编码、模型训练等步骤,从事NLP领域的人都有这种切身感受。事实上,HugggingFace中提供了datasets模块(数据处理)和Trainer函数,使得我们的模型训练较为方便。关于datasets模块,可参考文章NLP(六十二)HuggingFace中的Datasets使用。
  本文将会介绍如何使用HuggingFace中的Trainer对BERT模型微调。

Trainer

  Trainer是HuggingFace中的模型训练函数,其网址为:https://huggingface.co/docs/transformers/main_classes/trainer 。
  Trainer的传入参数如下:

model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module] = None
args: TrainingArguments = None
data_collator: typing.Optional[DataCollator] = None
train_dataset: typing.Optional[torch.utils.data.dataset.Dataset] = None
eval_dataset: typing.Union[torch.utils.data.dataset.Dataset, typing.Dict[str, torch.utils.data.dataset.Dataset], NoneType] = None
tokenizer: typing.Optional[transformers.tokenization_utils_base.PreTrainedTokenizerBase] = None
model_init: typing.Union[typing.Callable[[], transformers.modeling_utils.PreTrainedModel], NoneType] = None
compute_metrics: typing.Union[typing.Callable[[transformers.trainer_utils.EvalPrediction], typing.Dict], NoneType] = None
callbacks: typing.Optional[typing.List[transformers.trainer_callback.TrainerCallback]] = None
optimizers: typing.Tuple[torch.optim.optimizer.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None)
preprocess_logits_for_metrics: typing.Union[typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor], NoneType] = None )

参数解释:

  • model为预训练模型
  • args为TrainingArguments(训练参数)类
  • data_collator会将数据集中的元素组成一个batch,默认使用default_data_collator(),如果tokenizer没有提供,则使用DataCollatorWithPadding
  • train_dataset, eval_dataset为训练集,验证集
  • tokenizer为模型训练使用的tokenizer
  • model_init为模型初始化
  • compute_metrics为验证集的评估指标计算函数
  • callbacks为训练过程中的callback列表
  • optimizers为模型训练中的优化器
  • preprocess_logits_for_metrics为模型评估阶段前对logits的预处理

  TrainingArguments为训练参数类,其网址为:https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments,传入参数非常多(transformers版本4.32.1中有98个参数!),我们在这里只介绍几个常见的:

output_dir: stroverwrite_output_dir: bool = False
evaluation_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'no'
per_gpu_train_batch_size: typing.Optional[int] = None
per_gpu_eval_batch_size: typing.Optional[int] = None
learning_rate: float = 5e-05
num_train_epochs: float = 3.0
logging_dir: typing.Optional[str] = None
logging_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps'
save_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps'save_steps: float = 500
report_to: typing.Optional[typing.List[str]] = None

参数解释:

  • output_dir为模型输出目录
  • evaluation_strategy为模型评估策略
  1. “no": 不做模型评估
  2. “steps”: 按训练步数(steps)进行评估,需指定步数
  3. “epoch”: 每个epoch训练完后进行评估
  • per_gpu_train_batch_size, per_gpu_eval_batch_size为每个GPU上训练集和测试集的batch size,也有CPU上的对应参数
  • learning_rate为学习率
  • logging_dir为日志输出目录
  • logging_strategy为日志输出策略,同样有no, steps, epoch三种,意义同上
  • save_strategy为模型保存策略,同样有no, steps, epoch三种,意义同上
  • report_to为模型训练、评估中的重要指标(如loss, accurace)输出之处,可选择azure_ml, clearml, codecarbon, comet_ml, dagshub, flyte, mlflow, neptune, tensorboard, wandb,使用all会输出到所有的地方,使用no则不会输出。

  下面我们使用Trainer进行BERT模型微调,给出英语、中文数据集上文本分类的示例代码。

BERT微调

  使用datasets模块导入imdb数据集(英语影评数据集,常用于文本分类),加载预训练模型bert-base-cased的tokenizer。

import numpy as np
from transformers import AutoTokenizer, DataCollatorWithPadding
import datasetscheckpoint = 'bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
raw_datasets = datasets.load_dataset('imdb')

  查看数据集,有train(训练集)、test(测试集)、unsupervised(非监督)三部分,我们这里使用训练集和测试集,各自有25000个样本。

raw_datasets
DatasetDict({train: Dataset({features: ['text', 'label'],num_rows: 25000})test: Dataset({features: ['text', 'label'],num_rows: 25000})unsupervised: Dataset({features: ['text', 'label'],num_rows: 50000})
})

  创建数据tokenize函数,对文本进行tokenize,最大长度设置为300,同时使用data_collector为DataCollatorWithPadding。

def tokenize_function(sample):return tokenizer(sample['text'], max_length=300, truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

  加载分类模型,输出类别为2.

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

  设置compute_metrics函数,在评估过程中输出accuracy, f1, precision, recall四个指标。设置训练参数TrainingArguments类,设置Trainer。

from transformers import Trainer, TrainingArguments
from sklearn.metrics import accuracy_score, precision_recall_fscore_supportdef compute_metrics(pred):labels = pred.label_idspreds = pred.predictions.argmax(-1)precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')acc = accuracy_score(labels, preds)return {'accuracy': acc,'f1': f1,'precision': precision,'recall': recall}training_args = TrainingArguments(output_dir='imdb_test_trainer', # 指定输出文件夹,没有会自动创建evaluation_strategy="epoch",per_device_train_batch_size=32,per_device_eval_batch_size=32,learning_rate=5e-5,num_train_epochs=3,warmup_ratio=0.2,logging_dir='./imdb_train_logs',logging_strategy="epoch",save_strategy="epoch",report_to="tensorboard") trainer = Trainer(model,training_args,train_dataset=tokenized_datasets["train"],eval_dataset=tokenized_datasets["test"],data_collator=data_collator,  # 在定义了tokenizer之后,其实这里的data_collator就不用再写了,会自动根据tokenizer创建tokenizer=tokenizer,compute_metrics=compute_metrics
)

  开启模型训练。

trainer.train()
EpochTraining LossValidation LossAccuracyF1PrecisionRecall
10.3643000.2232230.9106000.9105090.9122760.910600
20.1648000.2044200.9239600.9239410.9243750.923960
30.0710000.2413500.9255200.9255100.9257590.925520
TrainOutput(global_step=588, training_loss=0.20003824169132986, metrics={'train_runtime': 1539.8692, 'train_samples_per_second': 48.705, 'train_steps_per_second': 0.382, 'total_flos': 1.156249755e+16, 'train_loss': 0.20003824169132986, 'epoch': 3.0})

  以上为英语数据集的文本分类模型微调。
  中文数据集使用sougou-mini数据集(训练集4000个样本,测试集495个样本,共5个输出类别),预训练模型采用bert-base-chinese。代码基本与英语数据集差不多,只要修改 预训练模型,数据集加载 和 最大长度为128,输出类别。以下是不同的代码之处:

import numpy as np
from transformers import AutoTokenizer, DataCollatorWithPadding
import datasetscheckpoint = 'bert-base-chinese'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)data_files = {"train": "./data/sougou/train.csv", "test": "./data/sougou/test.csv"}
raw_datasets = datasets.load_dataset("csv", data_files=data_files, delimiter=",")
...
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=5)
...

输出结果如下:

EpochTraining LossValidation LossAccuracyF1PrecisionRecall
10.8492000.1151890.9696970.9694490.9700730.969697
20.1069000.0939870.9737370.9737700.9753720.973737
30.0478000.0788610.9737370.9737400.9741170.973737

模型评估

  在上述模型评估过程中,已经有了模型评估的各项指标。
  本文也给出单独做模型评估的代码,方便后续对模型做量化时(后续介绍BERT模型的动态量化)获取量化前后模型推理的各项指标。
  中文数据集文本分类模型评估代码如下:

import torch
from transformers import AutoModelForSequenceClassificationMAX_LENGTH = 128
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
checkpoint = f"./sougou_test_trainer_{MAX_LENGTH}/checkpoint-96"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device)from transformers import AutoTokenizer, DataCollatorWithPaddingtokenizer = AutoTokenizer.from_pretrained(checkpoint)import pandas as pdtest_df = pd.read_csv("./data/sougou/test.csv")
test_df.head()
textlabel
0届数比赛时间比赛地点参加国家和地区冠军亚军决赛成绩第一届1956-1957英国11美国丹麦6...0
1商品属性材质软橡胶带加浮雕工艺+合金彩色队徽吊牌规格162mm数量这一系列产品不限量发行图案...0
2今天下午,沈阳金德和长春亚泰队将在五里河相遇。在这两支球队中沈阳籍球员居多,因此这场比赛实际...0
3本报讯中国足协准备好了与特鲁西埃谈判的合同文本,也在北京给他预订好了房间,但特鲁西埃爽约了!...0
4网友点击发表评论祝贺中国队夺得五连冠搜狐体育讯北京时间5月6日,2006年尤伯杯羽毛球赛在日...0
import numpy as np
import times_time = time.time()
true_labels, pred_labels = [], [] 
for i, row in test_df.iterrows():row_s_time = time.time()true_labels.append(row["label"])encoded_text = tokenizer(row['text'], max_length=MAX_LENGTH, truncation=True, padding=True, return_tensors='pt').to(device)# print(encoded_text)logits = model(**encoded_text)label_id = np.argmax(logits[0].detach().cpu().numpy(), axis=1)[0]pred_labels.append(label_id)if i % 100 == 0:print(i, (time.time() - row_s_time)*1000, label_id)print("avg time: ", (time.time() - s_time) * 1000 / test_df.shape[0])
0 229.3872833251953 0
100 362.0314598083496 1
200 311.16747856140137 2
300 324.13792610168457 3
400 406.9099426269531 4
avg time:  352.44047810332944
true_labels[:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
pred_labels[:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
from sklearn.metrics import classification_reportprint(classification_report(true_labels, pred_labels, digits=4))
              precision    recall  f1-score   support0     0.9900    1.0000    0.9950        991     0.9691    0.9495    0.9592        992     0.9900    1.0000    0.9950        993     0.9320    0.9697    0.9505        994     0.9895    0.9495    0.9691        99accuracy                         0.9737       495macro avg     0.9741    0.9737    0.9737       495
weighted avg     0.9741    0.9737    0.9737       495

总结

  本文介绍了如何使用HuggingFace中的Trainer对BERT模型微调。可以看到,使用Trainer进行模型微调,代码较为简洁,且支持功能丰富,是理想的模型训练方式。
  本文项目代码已开源至Github,网址为:https://github.com/percent4/PyTorch_Learning/tree/master/huggingface_learning 。
  本人已开通个人博客网站,网址为:https://percent4.github.io/ ,欢迎大家访问~

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

这篇关于NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771150

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm