NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调

2024-03-03 22:40

本文主要是介绍NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  以往,我们在使用HuggingFace在训练BERT模型时,代码写得比较复杂,涉及到数据处理、token编码、模型编码、模型训练等步骤,从事NLP领域的人都有这种切身感受。事实上,HugggingFace中提供了datasets模块(数据处理)和Trainer函数,使得我们的模型训练较为方便。关于datasets模块,可参考文章NLP(六十二)HuggingFace中的Datasets使用。
  本文将会介绍如何使用HuggingFace中的Trainer对BERT模型微调。

Trainer

  Trainer是HuggingFace中的模型训练函数,其网址为:https://huggingface.co/docs/transformers/main_classes/trainer 。
  Trainer的传入参数如下:

model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module] = None
args: TrainingArguments = None
data_collator: typing.Optional[DataCollator] = None
train_dataset: typing.Optional[torch.utils.data.dataset.Dataset] = None
eval_dataset: typing.Union[torch.utils.data.dataset.Dataset, typing.Dict[str, torch.utils.data.dataset.Dataset], NoneType] = None
tokenizer: typing.Optional[transformers.tokenization_utils_base.PreTrainedTokenizerBase] = None
model_init: typing.Union[typing.Callable[[], transformers.modeling_utils.PreTrainedModel], NoneType] = None
compute_metrics: typing.Union[typing.Callable[[transformers.trainer_utils.EvalPrediction], typing.Dict], NoneType] = None
callbacks: typing.Optional[typing.List[transformers.trainer_callback.TrainerCallback]] = None
optimizers: typing.Tuple[torch.optim.optimizer.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None)
preprocess_logits_for_metrics: typing.Union[typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor], NoneType] = None )

参数解释:

  • model为预训练模型
  • args为TrainingArguments(训练参数)类
  • data_collator会将数据集中的元素组成一个batch,默认使用default_data_collator(),如果tokenizer没有提供,则使用DataCollatorWithPadding
  • train_dataset, eval_dataset为训练集,验证集
  • tokenizer为模型训练使用的tokenizer
  • model_init为模型初始化
  • compute_metrics为验证集的评估指标计算函数
  • callbacks为训练过程中的callback列表
  • optimizers为模型训练中的优化器
  • preprocess_logits_for_metrics为模型评估阶段前对logits的预处理

  TrainingArguments为训练参数类,其网址为:https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments,传入参数非常多(transformers版本4.32.1中有98个参数!),我们在这里只介绍几个常见的:

output_dir: stroverwrite_output_dir: bool = False
evaluation_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'no'
per_gpu_train_batch_size: typing.Optional[int] = None
per_gpu_eval_batch_size: typing.Optional[int] = None
learning_rate: float = 5e-05
num_train_epochs: float = 3.0
logging_dir: typing.Optional[str] = None
logging_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps'
save_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps'save_steps: float = 500
report_to: typing.Optional[typing.List[str]] = None

参数解释:

  • output_dir为模型输出目录
  • evaluation_strategy为模型评估策略
  1. “no": 不做模型评估
  2. “steps”: 按训练步数(steps)进行评估,需指定步数
  3. “epoch”: 每个epoch训练完后进行评估
  • per_gpu_train_batch_size, per_gpu_eval_batch_size为每个GPU上训练集和测试集的batch size,也有CPU上的对应参数
  • learning_rate为学习率
  • logging_dir为日志输出目录
  • logging_strategy为日志输出策略,同样有no, steps, epoch三种,意义同上
  • save_strategy为模型保存策略,同样有no, steps, epoch三种,意义同上
  • report_to为模型训练、评估中的重要指标(如loss, accurace)输出之处,可选择azure_ml, clearml, codecarbon, comet_ml, dagshub, flyte, mlflow, neptune, tensorboard, wandb,使用all会输出到所有的地方,使用no则不会输出。

  下面我们使用Trainer进行BERT模型微调,给出英语、中文数据集上文本分类的示例代码。

BERT微调

  使用datasets模块导入imdb数据集(英语影评数据集,常用于文本分类),加载预训练模型bert-base-cased的tokenizer。

import numpy as np
from transformers import AutoTokenizer, DataCollatorWithPadding
import datasetscheckpoint = 'bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
raw_datasets = datasets.load_dataset('imdb')

  查看数据集,有train(训练集)、test(测试集)、unsupervised(非监督)三部分,我们这里使用训练集和测试集,各自有25000个样本。

raw_datasets
DatasetDict({train: Dataset({features: ['text', 'label'],num_rows: 25000})test: Dataset({features: ['text', 'label'],num_rows: 25000})unsupervised: Dataset({features: ['text', 'label'],num_rows: 50000})
})

  创建数据tokenize函数,对文本进行tokenize,最大长度设置为300,同时使用data_collector为DataCollatorWithPadding。

def tokenize_function(sample):return tokenizer(sample['text'], max_length=300, truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

  加载分类模型,输出类别为2.

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

  设置compute_metrics函数,在评估过程中输出accuracy, f1, precision, recall四个指标。设置训练参数TrainingArguments类,设置Trainer。

from transformers import Trainer, TrainingArguments
from sklearn.metrics import accuracy_score, precision_recall_fscore_supportdef compute_metrics(pred):labels = pred.label_idspreds = pred.predictions.argmax(-1)precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')acc = accuracy_score(labels, preds)return {'accuracy': acc,'f1': f1,'precision': precision,'recall': recall}training_args = TrainingArguments(output_dir='imdb_test_trainer', # 指定输出文件夹,没有会自动创建evaluation_strategy="epoch",per_device_train_batch_size=32,per_device_eval_batch_size=32,learning_rate=5e-5,num_train_epochs=3,warmup_ratio=0.2,logging_dir='./imdb_train_logs',logging_strategy="epoch",save_strategy="epoch",report_to="tensorboard") trainer = Trainer(model,training_args,train_dataset=tokenized_datasets["train"],eval_dataset=tokenized_datasets["test"],data_collator=data_collator,  # 在定义了tokenizer之后,其实这里的data_collator就不用再写了,会自动根据tokenizer创建tokenizer=tokenizer,compute_metrics=compute_metrics
)

  开启模型训练。

trainer.train()
EpochTraining LossValidation LossAccuracyF1PrecisionRecall
10.3643000.2232230.9106000.9105090.9122760.910600
20.1648000.2044200.9239600.9239410.9243750.923960
30.0710000.2413500.9255200.9255100.9257590.925520
TrainOutput(global_step=588, training_loss=0.20003824169132986, metrics={'train_runtime': 1539.8692, 'train_samples_per_second': 48.705, 'train_steps_per_second': 0.382, 'total_flos': 1.156249755e+16, 'train_loss': 0.20003824169132986, 'epoch': 3.0})

  以上为英语数据集的文本分类模型微调。
  中文数据集使用sougou-mini数据集(训练集4000个样本,测试集495个样本,共5个输出类别),预训练模型采用bert-base-chinese。代码基本与英语数据集差不多,只要修改 预训练模型,数据集加载 和 最大长度为128,输出类别。以下是不同的代码之处:

import numpy as np
from transformers import AutoTokenizer, DataCollatorWithPadding
import datasetscheckpoint = 'bert-base-chinese'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)data_files = {"train": "./data/sougou/train.csv", "test": "./data/sougou/test.csv"}
raw_datasets = datasets.load_dataset("csv", data_files=data_files, delimiter=",")
...
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=5)
...

输出结果如下:

EpochTraining LossValidation LossAccuracyF1PrecisionRecall
10.8492000.1151890.9696970.9694490.9700730.969697
20.1069000.0939870.9737370.9737700.9753720.973737
30.0478000.0788610.9737370.9737400.9741170.973737

模型评估

  在上述模型评估过程中,已经有了模型评估的各项指标。
  本文也给出单独做模型评估的代码,方便后续对模型做量化时(后续介绍BERT模型的动态量化)获取量化前后模型推理的各项指标。
  中文数据集文本分类模型评估代码如下:

import torch
from transformers import AutoModelForSequenceClassificationMAX_LENGTH = 128
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
checkpoint = f"./sougou_test_trainer_{MAX_LENGTH}/checkpoint-96"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device)from transformers import AutoTokenizer, DataCollatorWithPaddingtokenizer = AutoTokenizer.from_pretrained(checkpoint)import pandas as pdtest_df = pd.read_csv("./data/sougou/test.csv")
test_df.head()
textlabel
0届数比赛时间比赛地点参加国家和地区冠军亚军决赛成绩第一届1956-1957英国11美国丹麦6...0
1商品属性材质软橡胶带加浮雕工艺+合金彩色队徽吊牌规格162mm数量这一系列产品不限量发行图案...0
2今天下午,沈阳金德和长春亚泰队将在五里河相遇。在这两支球队中沈阳籍球员居多,因此这场比赛实际...0
3本报讯中国足协准备好了与特鲁西埃谈判的合同文本,也在北京给他预订好了房间,但特鲁西埃爽约了!...0
4网友点击发表评论祝贺中国队夺得五连冠搜狐体育讯北京时间5月6日,2006年尤伯杯羽毛球赛在日...0
import numpy as np
import times_time = time.time()
true_labels, pred_labels = [], [] 
for i, row in test_df.iterrows():row_s_time = time.time()true_labels.append(row["label"])encoded_text = tokenizer(row['text'], max_length=MAX_LENGTH, truncation=True, padding=True, return_tensors='pt').to(device)# print(encoded_text)logits = model(**encoded_text)label_id = np.argmax(logits[0].detach().cpu().numpy(), axis=1)[0]pred_labels.append(label_id)if i % 100 == 0:print(i, (time.time() - row_s_time)*1000, label_id)print("avg time: ", (time.time() - s_time) * 1000 / test_df.shape[0])
0 229.3872833251953 0
100 362.0314598083496 1
200 311.16747856140137 2
300 324.13792610168457 3
400 406.9099426269531 4
avg time:  352.44047810332944
true_labels[:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
pred_labels[:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
from sklearn.metrics import classification_reportprint(classification_report(true_labels, pred_labels, digits=4))
              precision    recall  f1-score   support0     0.9900    1.0000    0.9950        991     0.9691    0.9495    0.9592        992     0.9900    1.0000    0.9950        993     0.9320    0.9697    0.9505        994     0.9895    0.9495    0.9691        99accuracy                         0.9737       495macro avg     0.9741    0.9737    0.9737       495
weighted avg     0.9741    0.9737    0.9737       495

总结

  本文介绍了如何使用HuggingFace中的Trainer对BERT模型微调。可以看到,使用Trainer进行模型微调,代码较为简洁,且支持功能丰富,是理想的模型训练方式。
  本文项目代码已开源至Github,网址为:https://github.com/percent4/PyTorch_Learning/tree/master/huggingface_learning 。
  本人已开通个人博客网站,网址为:https://percent4.github.io/ ,欢迎大家访问~

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

这篇关于NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771150

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应