Carla自动驾驶仿真九:车辆变道路径规划

2024-03-03 01:28

本文主要是介绍Carla自动驾驶仿真九:车辆变道路径规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、关键函数
  • 二、完整代码
  • 效果


前言

本文介绍一种在carla中比较简单的变道路径规划方法,主要核心是调用carla的GlobalRoutePlanner模块和PID控制模块实现变道,大体的框架如下图所示。

在这里插入图片描述

在这里插入图片描述


一、关键函数

1、get_spawn_point(),该函数根据指定road和lane获得waypoint(这里之所以这么用是为了选择一条比较长的直路)。具体用法可以参考上篇文章:Carla自动驾驶仿真八:两种查找CARLA地图坐标点的方法

def get_spawn_point(self,target_road_id,target_lane_id):#每隔5m生成1个waypointwaypoints = self.map.generate_waypoints(5.0)# 遍历路点for waypoint in waypoints:if waypoint.road_id == target_road_id:lane_id = waypoint.lane_id# 检查是否已经找到了特定车道ID的路点if lane_id == target_lane_id:location = waypoint.transform.locationlocation.z = 1ego_spawn_point = carla.Transform(location, waypoint.transform.rotation)breakreturn ego_spawn_point

2、should_cut_in(),用于主车和目标车的相对距离判断,当目标车超越自车一定距离时,开始给cut_in_flag置Ture,并在下一步骤规划变道路径和执行变道操作。

 def should_cut_in(self,npc_vehicle, ego_vehicle, dis_to_cut=5):location1 = npc_vehicle.get_transform().locationlocation2 = ego_vehicle.get_transform().locationrel_x = location1.x - location2.xrel_y = location1.y - location2.ydistance = math.sqrt(rel_x * rel_x + rel_y * rel_y)print("relative dis",distance)#rel_x 大于等于0,说明目标车在前方if rel_x >= 0:distance = distanceelse:distance = -distanceif distance >= dis_to_cut:print("The conditions for changing lanes are met.")cut_in_flag = Trueelse:cut_in_flag = Falsereturn cut_in_flag

3、cal_target_route(),函数中调用了Carla的GlobalRoutePlanner模块,能根据起点和终点自动生成车辆行驶的路径(重点),我这里的变道起点是两车相对距离达到(阈值)时目标车的当前位置,而终点就是左侧车道前方target_dis米。将起点和终点代入到route = grp.trace_route(current_location, target_location)就能获取到规划路径route

在这里插入图片描述

 def cal_target_route(self,vehicle=None,lanechange="left",target_dis=20):#实例化道路规划模块grp = GlobalRoutePlanner(self.map, 2)#获取npc车辆当前所在的waypointcurrent_location = vehicle.get_transform().locationcurrent_waypoint = self.map.get_waypoint(current_location)#选择变道方向if "left" in lanechange:target_org_waypoint = current_waypoint.get_left_lane()elif "right" in lanechange:target_org_waypoint = current_waypoint.get_right_lane()#获取终点的位置target_location = target_org_waypoint.next(target_dis)[0].transform.location#根据起点和重点生成规划路径route = grp.trace_route(current_location, target_location)return route

4、speed_con_by_pid(),通过PID控制车辆的达到目标速度,pid是通过实例化Carla的PIDLongitudinalController实现。由于pid.run_step()只返回油门的控制,需要增加刹车的逻辑。

 control_signal = pid.run_step(target_speed=target_speed, debug=False)throttle = max(min(control_signal, 1.0), 0.0)  # 确保油门值在0到1之间brake = 0.0  # 根据需要设置刹车值if control_signal < 0:throttle = 0.0brake = abs(control_signal)  # 假设控制器输出的负值可以用来刹车vehilce.apply_control(carla.VehicleControl(throttle=throttle, brake=brake))

5、PID = VehiclePIDController()是carla的pid横纵向控制模块,通过设置目标速度和目标终点来实现轨迹控制control = PID.run_step(target_speed, target_waypoint),PID参数我随便调了一组,有兴趣的可以深入调一下。


二、完整代码

import carla
import time
import math
import sys#修改成自己的carla路径
sys.path.append(r'D:\CARLA_0.9.14\WindowsNoEditor\PythonAPI\carla')
from agents.navigation.global_route_planner import GlobalRoutePlanner
from agents.navigation.controller import VehiclePIDController,PIDLongitudinalController
from agents.tools.misc import draw_waypoints, distance_vehicle, vector, is_within_distance, get_speedclass CarlaWorld:def __init__(self):self.client = carla.Client('localhost', 2000)self.world = self.client.load_world('Town06')# self.world = self.client.get_world()self.map = self.world.get_map()# 开启同步模式settings = self.world.get_settings()settings.synchronous_mode = Truesettings.fixed_delta_seconds = 0.05def spawm_ego_by_point(self,ego_spawn_point):vehicle_bp = self.world.get_blueprint_library().filter('vehicle.tesla.*')[0]ego_vehicle = self.world.try_spawn_actor(vehicle_bp,ego_spawn_point)return ego_vehicledef spawn_npc_by_offset(self,ego_spawn_point,offset):vehicle_bp = self.world.get_blueprint_library().filter('vehicle.tesla.*')[0]# 计算新的生成点rotation = ego_spawn_point.rotationlocation = ego_spawn_point.locationlocation.x += offset.xlocation.y += offset.ylocation.z += offset.znpc_transform = carla.Transform(location, rotation)npc_vehicle = self.world.spawn_actor(vehicle_bp, npc_transform)return npc_vehicledef get_spawn_point(self,target_road_id,target_lane_id):#每隔5m生成1个waypointwaypoints = self.map.generate_waypoints(5.0)# 遍历路点for waypoint in waypoints:if waypoint.road_id == target_road_id:lane_id = waypoint.lane_id# 检查是否已经找到了特定车道ID的路点if lane_id == target_lane_id:location = waypoint.transform.locationlocation.z = 1ego_spawn_point = carla.Transform(location, waypoint.transform.rotation)breakreturn ego_spawn_pointdef cal_target_route(self,vehicle=None,lanechange="left",target_dis=20):#实例化道路规划模块grp = GlobalRoutePlanner(self.map, 2)#获取npc车辆当前所在的waypointcurrent_location = vehicle.get_transform().locationcurrent_waypoint = self.map.get_waypoint(current_location)#选择变道方向if "left" in lanechange:target_org_waypoint = current_waypoint.get_left_lane()elif "right" in lanechange:target_org_waypoint = current_waypoint.get_right_lane()#获取终点的位置target_location = target_org_waypoint.next(target_dis)[0].transform.location#根据起点和重点生成规划路径route = grp.trace_route(current_location, target_location)return routedef draw_target_line(self,waypoints):# 获取世界和调试助手debug = self.world.debug# 设置绘制参数life_time = 60.0  # 点和线将持续显示的时间(秒)color = carla.Color(255, 0, 0)thickness = 0.3  # 线的厚度for i in range(len(waypoints) - 1):debug.draw_line(waypoints[i][0].transform.location + carla.Location(z=0.5),waypoints[i + 1][0].transform.location + carla.Location(z=0.5),thickness=thickness,color=color,life_time=life_time)def draw_current_point(self,current_point):self.world.debug.draw_point(current_point,size=0.1, color=carla.Color(b=255), life_time=60)def speed_con_by_pid(self,vehilce=None,pid=None,target_speed=30):control_signal = pid.run_step(target_speed=target_speed, debug=False)throttle = max(min(control_signal, 1.0), 0.0)  # 确保油门值在0到1之间brake = 0.0  # 根据需要设置刹车值if control_signal < 0:throttle = 0.0brake = abs(control_signal)  # 假设控制器输出的负值可以用来刹车vehilce.apply_control(carla.VehicleControl(throttle=throttle, brake=brake))def set_spectator(self,vehicle):self.world.get_spectator().set_transform(carla.Transform(vehicle.get_transform().location +carla.Location(z=50), carla.Rotation(pitch=-90)))def should_cut_in(self,npc_vehicle, ego_vehicle, dis_to_cut=5):location1 = npc_vehicle.get_transform().locationlocation2 = ego_vehicle.get_transform().locationrel_x = location1.x - location2.xrel_y = location1.y - location2.ydistance = math.sqrt(rel_x * rel_x + rel_y * rel_y)print("relative dis",distance)if rel_x >= 0:distance = distanceelse:distance = -distanceif distance >= dis_to_cut:print("The conditions for changing lanes are met.")cut_in_flag = Trueelse:cut_in_flag = Falsereturn cut_in_flagif __name__ == '__main__':try:CARLA = CarlaWorld()#根据road_id和lane_id选择出生点start_point = CARLA.get_spawn_point(target_road_id=40, target_lane_id=-5)#生成自车ego_vehicle = CARLA.spawm_ego_by_point(start_point)#设置初始的观察者视角CARLA.set_spectator(ego_vehicle)#相对ego生成目标车relative_ego = carla.Location(x=-10, y=3.75, z=0)npc_vehicle = CARLA.spawn_npc_by_offset(start_point, relative_ego)# 设置ego自动巡航ego_vehicle.set_autopilot(True)#设置目标车初始速度的纵向控制PIDinitspd_pid = PIDLongitudinalController(npc_vehicle, K_P=1.0, K_I=0.1, K_D=0.05)#设置目标车的cut_in的横纵向控制PIDargs_lateral_dict = {'K_P': 0.8, 'K_D': 0.8, 'K_I': 0.70, 'dt': 1.0 / 10.0}args_long_dict = {'K_P': 1, 'K_D': 0.0, 'K_I': 0.75, 'dt': 1.0 / 10.0}PID = VehiclePIDController(npc_vehicle, args_lateral_dict, args_long_dict)waypoints = Nonewaypoint_index = 0need_cal_route = Truecut_in_flag = Falsearrive_target_point = Falsetarget_distance_threshold = 2.0  # 切换waypoint的距离start_sim_time = time.time()while not arrive_target_point:CARLA.world.tick()# 更新观察者的视野CARLA.set_spectator(ego_vehicle)#计算目标车的初始速度ego_speed = (ego_vehicle.get_velocity().x  * 3.6) #km/htarget_speed = ego_speed + 8 #目标车的目标速度#是否满足cut_in条件if cut_in_flag:if need_cal_route:#生成车侧车道前方30m的waypointwaypoints = CARLA.cal_target_route(npc_vehicle,lanechange= "left",target_dis=30)CARLA.draw_target_line(waypoints)need_cal_route = False# 如果已经计算了路线if waypoints is not None and waypoint_index < len(waypoints):# 获取当前目标路点target_waypoint = waypoints[waypoint_index][0]# 获取车辆当前位置transform = npc_vehicle.get_transform()#绘制当前运行的点CARLA.draw_current_point(transform.location)# 计算车辆与当前目标路点的距离distance_to_waypoint = distance_vehicle(target_waypoint, transform)# 如果车辆距离当前路点的距离小于阈值,则更新到下一个路点if distance_to_waypoint < target_distance_threshold:waypoint_index += 1  # 移动到下一个路点if waypoint_index >= len(waypoints):arrive_target_point = Trueprint("npc_vehicle had arrive target point.")break  # 如果没有更多的路点,退出循环else:# 计算控制命令control = PID.run_step(target_speed, target_waypoint)# 应用控制命令npc_vehicle.apply_control(control)else:#设置NPC的初始速度CARLA.speed_con_by_pid(npc_vehicle,initspd_pid,target_speed)#判断是否可以cut incut_in_flag = CARLA.should_cut_in(npc_vehicle,ego_vehicle,dis_to_cut=8)# 判断是否达到模拟时长if time.time() - start_sim_time > 60:print("Simulation ended due to time limit.")break#到达目的地停车npc_vehicle.apply_control(carla.VehicleControl(throttle=0, steer=0, brake=-0.5))print("Control the target car to brake.")time.sleep(10)except Exception as e:print(f"An error occurred: {e}")finally:# 清理资源print("Cleaning up the simulation...")if ego_vehicle is not None:ego_vehicle.destroy()if npc_vehicle is not None:npc_vehicle.destroy()settings = CARLA.world.get_settings()settings.synchronous_mode = False  # 禁用同步模式settings.fixed_delta_seconds = None

效果

下述是变道规划简单的实现,轨迹跟踪效果比较一般,PID没有仔细调,紫色是车辆运行的点迹。

在这里插入图片描述
公众号:自动驾驶simulation

这篇关于Carla自动驾驶仿真九:车辆变道路径规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768030

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

QT实现TCP客户端自动连接

《QT实现TCP客户端自动连接》这篇文章主要为大家详细介绍了QT中一个TCP客户端自动连接的测试模型,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录版本 1:没有取消按钮 测试效果测试代码版本 2:有取消按钮测试效果测试代码版本 1:没有取消按钮 测试效果缺陷:无法手动停

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表