【模型复现】自制数据集上复现目标检测域自适应 SSDA-YOLO

2024-03-02 11:52

本文主要是介绍【模型复现】自制数据集上复现目标检测域自适应 SSDA-YOLO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【模型复现】自制数据集上复现目标检测域自适应 SSDA-YOLO

  • 1. 环境安装
  • 2. 数据集制作
    • 2.1 数据准备
    • 2.2 数据结构
  • 3. 模型训练
    • 3.1 数据文件配置
    • 3.2 训练超参数配置
    • 3.3 模型训练
  • 4. 模型验证
    • 4.1 验证超参数配置
    • 4.2 模型验证
  • 5. 模型推理
    • 5.1 推理超参数配置
    • 5.2 模型推理
  • 6. 踩坑记录
    • 6.1 AssertionError: train_target_real_fake: No labels in xxx/labels/train.cache. Can not train without labels.
    • 6.2 ValueError: could not broadcast input array from shape (427,325,3) into shape (428,325,3)
    • 6.3 RuntimeError: result type Float can't be cast to the desired output type long int.
    • 6.4 RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:2!


Code 链接: SSDA-YOLO
Paper 链接: SSDA-YOLO: Semi-Supervised Domain Adaptive YOLO for Cross-Domian Object Detection

1. 环境安装

# 创建环境
conda create -n ssda_yolo python=3.9# 激活环境
conda activate ssda_yolo# torch 安装
# 本机 CUDA 为 11.8,故安装了符合要求的 pytorch==1.13,这里需要自行根据 CUDA 版本安装适配的 torch 版本
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117# clone 代码
git clone https://github.com/hnuzhy/SSDA-YOLO.git# pip 包
cd SSDA-YOLO
pip install -r requirements.txt

2. 数据集制作

2.1 数据准备

  • 以下面展示 README.md 中提到的 CityScapes --> CityScapes Foggy 域适应为例,需要准备数据集 CityScapesCityScapes FoggyNormal-style --> Foggy-styleFoggy-style --> Normal-style
    在这里插入图片描述
  • 其中 Normal-style --> Foggy-styleFoggy-style --> Normal-style 均由 CUT 模型训练得来。CUT 模型训练过程见链接: 【模型复现】自制数据集上复现风格迁移模型 CUT:Contrastive Unpaired Translation

2.2 数据结构

  • 准备训练数据,数据集的文件结构为:
    my_datasets/
    ├──cityscapes_source
    │	├──cityscapes_real
    │	│	├──images/train
    │	│	│	├──xxx.jpg
    │	│	│	└──xxx.jpg
    │	│	└──labels/train
    │	│		├──xxx.txt
    │	│		└──xxx.txt
    │	└──cityscapes_fake
    │		├──images/train
    │		│	├──xxx.jpg
    │		│	└──xxx.jpg
    │		└──labels/train
    │			├──xxx.txt
    │			└──xxx.txt
    └──cityscapesfoggy_target├──cityscapesfoggy_real│	├──images│	│	├──train│	│	│	└──xxx.jpg│	│	│	└──xxx.jpg│	│	└──val│	│		└──xxx.jpg│	│		└──xxx.jpg│	└──labels│		├──train│		│	└──xxx.txt│		│	└──xxx.txt│		└──val│			└──xxx.txt│			└──xxx.txt└──cityscapesfoggy_fake├──images/train│	├──xxx.jpg│	└──xxx.jpg└──labels/train├──xxx.txt└──xxx.txt
    

3. 模型训练

3.1 数据文件配置

  • ./data/yamls_sda 路径下新建数据配置 yaml 文件并进行配置,修改数据加载路径等参数。
    • path: 数据存放路径
    • train_source_real:源域真实训练数据
    • train_source_fake:源域上使用 CUT 生成目标域形式的数据
    • train_target_real:目标域真实训练数据
    • train_target_fake:目标域上使用 CUT 生成源域形式的数据
    • test_target_real:目标域真实测试数据
    • nc:标签数量
    • names:标签名称
  • 数据配置文件示例如下:
    在这里插入图片描述

3.2 训练超参数配置

  • 通过 ssda_yolov5_train.py 进行训练超参数配置,按需进行超参数配置。
    在这里插入图片描述

3.3 模型训练

  • 训练指令
    python -m torch.distributed.launch --nproc_per_node 8 ssda_yolov5_train.py
    
  • 在终端中运行训练命令,若看到下述界面,即成功复现!!!
    在这里插入图片描述

4. 模型验证

4.1 验证超参数配置

  • 通过 ssda_yolov5_test.py 进行验证超参数配置,按需进行超参数配置。
    在这里插入图片描述

4.2 模型验证

  • 验证指令
    python ssda_yolov5_test.py
    
  • 验证成功界面如下。
    在这里插入图片描述

5. 模型推理

  • 官方代码中并未给出模型推理脚本,但分析代码不难发现,推理脚本可复用 YOLOv5-5.0 的推理脚本 detect.py,见链接 YOLOv5-5.0 detect.py,将代码放在主目录下配置参数即可。

5.1 推理超参数配置

  • 通过 detect.py 进行推理超参数配置,按需进行超参数配置。
    在这里插入图片描述

5.2 模型推理

  • 推理指令
    python detect.py
    
  • 推理成功界面如下。
    在这里插入图片描述

6. 踩坑记录

6.1 AssertionError: train_target_real_fake: No labels in xxx/labels/train.cache. Can not train without labels.

在这里插入图片描述

  • 解决方法:
    • 虽然 targetlabels 训练中未使用,但也需按照规范放置 imageslabels.

6.2 ValueError: could not broadcast input array from shape (427,325,3) into shape (428,325,3)

在这里插入图片描述

  • 问题分析:
    • 在进行 mosaic 增强时,图片尺寸不符。查看 soure_fakesource_real 的尺寸后,发现经过 CUT 生成的图像和源域的图像中存在尺寸不一致的情况,导致增强时报错。
      在这里插入图片描述
  • 解决方法:
    • 分别将 soure_fake & source_realtarget_fake & target_real 的尺寸调整一致后进行模型训练。
    • 实现脚本如下:
      import os
      from PIL import Image# 图像文件夹路径
      folder_a = './real/images/train'  # 存放jpg图像的文件夹
      folder_b = './fake/images/train'  # 存放png图像的文件夹for filename in os.listdir(folder_a):if filename.lower().endswith('.jpg'):jpg_path = os.path.join(folder_a, filename)png_path = os.path.join(folder_b, filename.replace('.jpg', '.png'))if os.path.exists(png_path):with Image.open(jpg_path) as jpg_image:with Image.open(png_path) as png_image:jpg_size = jpg_image.sizepng_size = png_image.size# 比较尺寸if jpg_size != png_size:print(f"尺寸不一致: {filename}")# 如果尺寸不一致,调整png图像的大小png_image_resized = png_image.resize(jpg_size, Image.ANTIALIAS)png_image_resized.save(png_path)else:print(f"尺寸一致: {filename}")else:print(f"在文件夹B中找不到对应的png文件: {filename}")
      

6.3 RuntimeError: result type Float can’t be cast to the desired output type long int.

在这里插入图片描述

  • 解决方法:
    • utils/loss.py 第 216 行进行如下修改:
    # indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
    indices.append((b, a, gj.clamp_(0, gain[3].long() - 1), gi.clamp_(0, gain[2].long() - 1)))   # image, anchor, grid indice
    
    • 修改完成后如下所示。
      在这里插入图片描述

6.4 RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:2!

在这里插入图片描述

  • 解决方法:
    • 在使用多卡时,训练命令使用 python -m torch.distributed.launch --nproc_per_node 8 ssda_yolov5_train.py

这篇关于【模型复现】自制数据集上复现目标检测域自适应 SSDA-YOLO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766028

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro