Opencv实战(3)详解霍夫变换

2024-02-28 20:44

本文主要是介绍Opencv实战(3)详解霍夫变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

霍夫变换

Opencv实战系列指路前文:
Opencv(1)读取与图像操作
Opencv(2)绘图与图像操作

文章目录

  • 霍夫变换
    • 1.霍夫线变换
      • 1.1 原理
      • 1.2 HoughLines()
    • 2.霍夫圆变换
      • 2.1 原理
      • 2.2 HoughCircles()

最基本的霍夫变换是从黑白图像中检测直线(线段)

霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。

1.霍夫线变换

1.1 原理

图像空间点——>参数空间线,图像空间点共线——>参数空间线交点, 参数空间点——>图像空间线

1.2 HoughLines()

void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0 )
  • 第二个参数 存储线条,每线条由 $ (\rho , \theta) $表示
  • 第三个参数 rho 距离精度(步长) $ \rho $
  • 第四个参数 theta 角度精度 $ \theta $

2.霍夫圆变换

2.1 原理

$ (x_0-a)2+(y_0-b)2=R^2 $

  1. 从平面坐标到极坐标转换三个参数 C ( a 0 , b 0 , r ) C(a_0,b_0,r) C(a0,b0,r) a0 ,b0是圆心
  2. 图像空间点—>参数空间圆锥,图像空间点共圆—>圆锥截面圆交点, 三维空间点—>图像空间圆

2.2 HoughCircles()

基本原理

  1. 噪声敏感——>中值滤波
  2. 基于图像梯度,检测边缘发现可能圆心,从可能圆心计算最佳半径

霍夫梯度法

  1. 计算图像中每个像素点的梯度方向和大小。可以使用Sobel算子或其他边缘检测算法来计算梯度。
  2. 对于每个像素点,根据其梯度方向和大小,在参数空间中生成可能的直线或圆的参数。对于直线,参数通常是斜率和截距;对于圆,参数通常是圆心坐标和半径。
  3. 对于每个生成的参数组合,统计通过该参数组合的像素点数量。这可以通过累加器数组来实现,数组的每个元素对应一个参数组合,值表示通过该参数组合的像素点数量。
  4. 根据累加器数组的结果,找到可能存在的直线或圆的参数。可以设置一个阈值来筛选出像素点数量大于阈值的参数组合,即为检测到的直线或圆。
  5. 根据检测到的直线或圆的参数,在原始图像上绘制检测结果。
void HoughCircles(InputArray image,OutputArray circles, int method, double dp, double minDist, double param1=100,double param2=100, int minRadius=0, int maxRadius=0 )
  • method : CV_HOUGH_GRADIENT

  • dp : 如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。

  • minDist :为霍夫变换检测到的圆的圆心之间的最小距离

  • param1 :传递给canny边缘检测算子的高阈值

  • param2 :越小,可以检测更多根本不存在的圆;越大,能通过检测的圆更加接近完美的圆形

connectedComponentsWithStats()

int cv::connectedComponentsWithStats(InputArray image,OutputArray labels,OutputArray stats,OutputArray centroids,int connectivity = 8, int ltype = CV_32S );

retval : 返回值是连通区域的数量。
labels : labels是一个与image一样大小的矩形(labels.shape = image.shape),其中每一个连通区域会有一个唯一标识,标识从0开始。
stats :stats会包含5个参数分别为x,y,h,w,s。分别对应每一个连通区域的外接矩形的起始坐标x,y;外接矩形的wide,height;s其实不是外接矩形的面积,实践证明是labels对应的连通区域的像素个数。
centroids : 返回的是连通区域的质心。

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

python

在这里插入图片描述

这篇关于Opencv实战(3)详解霍夫变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756565

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义