本文主要是介绍Kaggle泰坦尼克生存预测之随机森林学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
这篇文章讲述的是Kaggle上一个赛题的解决方案——Titanic幸存预测.问题背景是我们大家都熟悉的【Jack and Rose】的故事,豪华游艇与冰山相撞,大家惊慌而逃,可是救生艇的数量有限,无法人人都有。赛题官方提供训练数据和测试数据两份数据,训练数据主要是一些乘客的个人信息以及存活状况,测试数据也是乘客的个人信息但是没有存活状况的显示。所以本文的主要目的就是,根据训练数据生成合适的模型并预测测试数据中乘客的生存状况。
阅读路线:
- 预览数据
- 数据初分析
- 弥补缺失值
- 建立模型并预测
- 随机森林算法的理解
预览数据
先看看我们的数据长什么样子,赛题官方给我们提供了两份数据train.csv,test.csv为了方便我们先把所需要的R库给加载了,其中一些R库大家平常没有用到的话,要记得下载。
library(readr) # File read / write
library(ggplot2) # Data visualization
library(ggthemes) # Data visualization
library(scales) # Data visualization
library(plyr)# Data manipulation
library(stringr) # String manipulation
library(InformationValue) # IV / WOE calculation
library(MLmetrics) # Mache learning metrics.e.g. Recall, Precision,Accuracy, AUC
library(rpart) # Decision tree utils
library(randomForest) # Random Forest
library(dplyr) # Data manipulation
library(e1071) # SVM
library(Amelia) # Missing value utils
library(party) # Conditional inference trees
library(gbm) # AdaBoost
library(class) # KNN.
读取数据
#通过getwd()函数查看当下工作路劲,把文件放到当下工作路径中
train <-read_csv("train.csv")
test <-read_csv("test.csv")
data<- bind_rows(train, test) #组合
train.row<- 1:nrow(train)
test.row<- (1 + nrow(train)):(nrow(train) + nrow(test))
注意:
- 这里是把训练数据和测试数据合并了,原因是之后的操作过程中要对数据的格式做转换,还会对分类变量增加新的level(比如:分类变量性别,我们的操作就是,原有的基础之上,增加一个字段 为男的列和一个字段为女的列)为了避免重复操作和出错,所以就干脆一起操作了。
- bind_rows()用法:
When row-binding, columns are matched by name, and any missing columns with be filled with NA,简单的来说就是按照列来组合两份数据,少列的自动填充为NA值(大家查资料的时候,能用谷歌就用谷歌吧,并在英文状态下搜索)
观察数据
> str(data)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 1309 obs. of 12 variables:$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...$ Survived : int 0 1 1 1 0 0 0 0 1 1 ...$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...$ Name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)" "Heikkinen, Miss. Laina" "Futrelle, Mrs. Jacques Heath (Lily May Peel)" ...$ Sex : chr "male" "female" "female" "female" ...$ Age : num 22 38 26 35 35 NA 54 2 27 14 ...$ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...$ Parch : int 0 0 0 0 0 0 0 1 2 0 ...$ Ticket : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...$ Fare : num 7.25 71.28 7.92 53.1 8.05 ...$ Cabin : chr NA "C85" NA "C123" ...$ Embarked : chr "S" "C" "S" "S" ...
> > str(test)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 418 obs. of 11 variables:$ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ...> str(train)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 891 obs. of 12 variables:$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
由结果可见,数据集包含12个变量,1309条数据,其中891条为训练数据,418条为测试数据。
- PassengerId 整型变量,标识乘客的ID,递增变量,对预测无帮助
- Survived 整型变量,标识该乘客是否幸存。0表示遇难,1表示幸存。将其转换为factor变量比较方便处理
- Pclass 整型变量,标识乘客的社会-经济状态,1代表Upper,2代表Middle,3代表Lower
- Name 字符型变量,除包含姓和名以外,还包含Mr.
Mrs. Dr.这样的具有西方文化特点的信息 - Sex 字符型变量,标识乘客性别,适合转换为factor类型变量
- Age 整型变量,标识乘客年龄,有缺失值
- SibSp 整型变量,代表兄弟姐妹及配偶的个数。其中Sib代表Sibling也即兄弟姐妹,Sp代表Spouse也即配偶
- Parch 整型变量,代表父母或子女的个数。其中Par代表Parent也即父母,Ch代表Child也即子女
- Ticket 字符型变量,代表乘客的船票号 Fare 数值型,代表乘客的船票价
- Cabin 字符型,代表乘客所在的舱位,有缺失值
- Embarked 字符型,代表乘客登船口岸,适合转换为factor型变量
数据初分析
我们这一步的主要目的看看除了PassengerId 整型变量以外,其他10个变量和乘客的幸存率之间是什么关系。让我们先看一下训练集中的乘客幸存率是如何的。
> table(train$Survived)0 1
549 342
> prop.table((table(train$Survived))) #prop.table()是计算表中值的百分比,这里就是我们的得到的列联表0 1
0.6161616 0.3838384
这里大家不要忘了数值1代表幸存,数值0代表的是遇难。所以从上面我们就能轻松看到乘客幸存率约为38%(342/891),也就是说约62%(549/891)的乘客丧命。那赛题官方给我们的测试集(test.csv)中人员的生存情况又是如何的呢?其实,这就需要我们建立数学模型来预测了,但是在之前,我们要找到数据集中的哪些变量对幸存这个事件是有影响的呢?来吧,我们接着往下看。
注意:table()函数对应统计学中列联表,用于记录频数(学习链接)
- 乘客社会等级与幸存率的影响
记得小时候看古装片,比如说一个太尉带着一帮人出去游玩,遭到了埋伏,这时就有贴身侍卫说保护太尉、带太尉先走,我来掩护。那么外国的权贵们会不会也受到同等的待遇呢?
data$Survived <- factor(data$Survived) #变成因子型变量
ggplot(data = data[1:nrow(train),], mapping = aes(x = Pclass, y = ..count.., fill=Survived)) + geom_bar(stat = "count", position='dodge') + xlab('Pclass') + ylab('Count') + ggtitle('How Pclass impact survivor') + scale_fill_manual(values=c("#FF0000", "#00FF00")) +geom_text(stat = "count", aes(label = ..count..), position=position_dodge(width=1), , vjust=-0.5) + theme(plot.title = element_text(hjust = 0.5), legend.position="bottom")
由图我们能够清晰的看出,Pclass=1的乘客大部分幸存,Pclass=2的乘客接近一半幸存,而Pclass=3的乘客只有不到25%幸存,所以可以认为乘客社会等级越高,幸存率是越高的。
其实当我们要用模型方法(逻辑回归、随机森林、决策树等)构建数学模型时,经常会剔除掉一些变量,比如有100个变量,可能会取其中的几十个。那你可能要问筛选的原则是什么呢?其实最主要和最直接的衡量标准是就是变量的预测能力,可以简单理解成这个变量能够预测一个结果发生的可信度。而衡量变量的预测能力的主要的指标是IV(Information Value)信息价值,但是在计算IV之前,要先计算出WOE,因为IV的计算是以WOE为基础的(WOE的全程为Weight Of Evidence,即是证据权重),暂时先知道这些名词的意思吧,写主智商着急,不会证明啊。
> WOETable(X=factor(data$Pclass[1:nrow(train)]), Y=data$Survived[1:nrow(train)])CAT GOODS BADS TOTAL PCT_G PCT_B WOE IV
1 1 136 80 216 0.3976608 0.1457195 1.0039160 0.25292792
2 2 87 97 184 0.2543860 0.1766849 0.3644848 0.02832087
3 3 119 372 491 0.3479532 0.6775956 -0.6664827 0.21970095
> IV(X=factor(data$Pclass[1:nrow(train)]), Y=data$Survived[1:nrow(train)])
[1] 0.5009497
attr(,"howgood")
[1] "Highly Predictive"
从结果可以看出,Pclass的IV为0.5,且“Highly Predictive”。由此可以暂时将Pclass作为预测模型的特征变量之一。
- 性别对于幸存率的影响
如果大家看过这部电影的话,应该对当时副船长说的【lady and kid first!】有印象,这么说是不是
这篇关于Kaggle泰坦尼克生存预测之随机森林学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!